Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мерзликин Г.Я. - Основы теории ядерных реакторо...doc
Скачиваний:
78
Добавлен:
24.08.2019
Размер:
4.79 Mб
Скачать

Тема 9 критические размеры и нейтронное поле в реакторе с отражателем

До сих пор, когда разговор шёл о геометрическом параметре и нейтронном поле в цилиндрическом гомогенном тепловом реакторе, речь велась скорее о модели реального реактора, модели идеальной, гипотетической, ибо трудно представить что-либо более нереальное, чем "голенький" цилиндр гомогенной размножающей среды, висящий в вакууме.

Так в действительности не бывает. Не можем мы позволить тепловым нейтронам, столь трудно генерируемым в активной зоне, беспрепятственно утекать и навсегда теряться вне её, зная, что они могли бы "поработать созидательно", вызвав дополнительные деления ядер топлива.

Что же делать? - спросите вы, - ведь нейтроны - электронейтральные частицы, поэтому даже толстый слой вещества для них - не препятствие; если же окружить активную зону слоем сильного поглотителя, то последний поглотит утекающие тепловые нейтроны, уменьшив тем самым плотность их в месте поглощения вблизи активной зоны настолько, что величина градиента плотности тепловых нейтронов на границе активной зоны с окружающим её поглотителем возрастёт, из-за чего возрастёт и скорость утечки нейтронов из активной зоны.

Следовательно, окружение активной зоны поглощающим материалом уменьшения утечки тепловых нейтронов из реактора не даёт; надо придумывать что-то другое.

Это "другое" в энергетических реакторах реализовано в виде принципиально особого конструктивного узла, называемого отражателем.

9.1. Отражатель теплового реактора

9.1.1. Назначение. Отражателем реактора называется окружающая его активную зону особая среда, которая в силу своих хороших замедляющих свойств позволяет:

- уменьшить утечку тепловых нейтронов из активной зоны;

- уменьшить критические размеры активной зоны и

- несколько выровнять поле тепловых нейтронов в активной зоне.

Из сказанного вытекает не только функциональное назначение отражателя, но и главное требование к его материалу: он должен быть хорошим замедлителем нейтронов, то есть обладать достаточно большим значением замедляющей способности (s) и как можно более низким значением макросечения поглощения замедляющихся и тепловых нейтронов (a).

9.1.2. Физический механизм действия отражателя. Предположим, что гомогенная цилиндрическая активная зона определённого состава в вакууме характеризуется экстраполированными критическими размерами Н' и D'. Эти размеры мало отличаются от реальных критических размеров активной зоны в вакууме, так как длина линейной экстраполяции d в реальных энергетических реакторах очень мала по сравнению с размерами реактора (в уран-водных системах d  1 см).

Из этой критической активной зоны в вакуум происходит утечка тепловых и замедляющихся (эпитепловых) нейтронов: эпитепловых - в большей степени, тепловых - в меньшей, в силу того, что все вещества активной зоны обладают намного большими величинами сечений поглощения по отношению к тепловым нейтронам, чем по отношению к эпитепловым; кроме того, эпитепловые нейтроны обладают намного большими скоростями, чем тепловые. Одним словом, возможности для утечки из активной зоны у эпитепловых нейтронов несравненно большие, чем у тепловых.

А теперь вообразим, что эту активную зону из вакуума мы переносим в большой объём хорошего замедлителя (например, воды). Что произойдет?

Все утекающие из активной зоны эпитепловые нейтроны, попадая в среду чистого замедлителя, замедляются более интенсивно, чем ранее в среде активной зоны (имеющей меньшее количество замедлителя и, к тому же, нашпигованной резонансными захватчиками нейтронов). Это означает, что в окружающем активную зону замедлителе (вблизи её границ) идёт интенсивный процесс замедления утекающих из активной зоны эпитепловых нейтронов. А так как замедлитель является плохим поглотителем тепловых нейтронов, образующиеся в замедлителе вне активной зоны тепловые нейтроны слабо поглощаются в нём, из-за чего в месте их образования они вынуждены накапливаться. Это накопление выглядит как увеличение величины плотности тепловых нейтронов n (или их плотности потока Ф) в распределении n(r) или Ф(r) по толщине отражателя. Максимальное значение плотности потока тепловых нейтронов в области "всплеска" определяется балансом скоростей генерации, поглощения и утечки тепловых нейтронов в этой области.

Н о так как величина плотности потока тепловых нейтронов в области "всплеска" больше, чем величина Ф на границе активной зоны и отражателя, то процесс диффузии тепловых нейтронов из этой области (в соответствии с законом Фика) пойдет в двух направлениях: часть тепловых нейтронов из зоны левого (ближнего к активной зоне) крыла "всплеска" будут диффундировать к границе активной зоны, а вторая часть из зоны правого крыла "всплеска" - в противоположном направлении, в наружные слои отражателя (рис.9.1).

Отражатель

Контур критической а.з. без отражателя в вакууме

э

Ф(r) Н = Наз + 2э

r Наз

Контур реальной критической

а.з. в окружении бесконечно

э толстого отражателя

э

Rаз

R = Rаз + э

Рис.9.1.К пояснению физического механизма работы отражателя.

Диффундирующие в отражателе к границе активной зоны тепловые нейтроны добавляются к тепловым нейтронам, которые покинули активную зону, и увеличивают значение плотности тепловых нейтронов в отражателе, в области непосредственной близости к активной зоне (включая и границу) сравнительно с тем значением, которое было без отражателя. И так как граничное значение плотности потока тепловых нейтронов становится выше, чем было без отражателя, это влечёт за собой уменьшение градиента плотности потока тепловых нейтронов на границе активной зоны, а значит – и плотности тока утечки тепловых нейтронов из активной зоны, и за счёт этого - увеличивается значение эффективного коэффициента размножения (kэ), и, если активная зона в вакууме была критичной, то после окружения её толстым слоем отражателя она становится надкритичной.

И чтобы сделать её опять критичной, не меняя её состава, путь один - уменьшать её размеры на такую величину э, пока она вновь не возвратится в критическое состояние. Поскольку окружение активной зоны отражателем приводит в увеличению плотности потока тепловых нейтронов на границах активной зоны (то есть к увеличению наименьшего значения Ф в активной зоне), это означает, что даже при неизменном максимальном значении Ф (в центре активной зоны) вместе с этим повышаются и средние значения Ф по радиусу и высоте активной зоны, т.е. распределение плотности потока тепловых нейтронов в активной зоне несколько выравнивается, становится более равномерным и по радиусу, и по высоте.

Итак, отражатель - не есть устройство наподобие зеркала, попадая на которое нейтроны отражаются в противоположном направлении; отражатель теплового реактора не отражает нейтроны в изначальном смысле этого слова, а скорее работает как трансформатор утечки эпитепловых нейтронов в тепловые, как накопитель последних для создания барьера, препятствующего утечке тепловых нейтронов, и это происходит в силу закона диффузии тепловых нейтронов. Отражатель не может полностью задержать все утекающие из активной зоны нейтроны, он лишь уменьшает утечку тепловых нейтронов.

Возникает естественный вопрос: а нельзя ли, опираясь на закон Фика, заставить тепловые нейтроны из отражателя двигаться в активную зону, то есть изменить направление утечки, превратив её во «втечку»? Для этого надо, чтобы градиент плотности потока тепловых нейтронов на границе активной зоны имел положительный знак.

В самом деле (рис.9.2а), поскольку вектор плотности тока утечки I тепловых нейтронов всегда (закон Фика!) противоположен по направлению вектору градиента плотности потока тепловых нейтронов, то, если градиент плотности потока на границе активной зоны с отражателем имеет положительный знак (то есть направлен из активной зоны в отражатель), то направление диффузии тепловых нейтронов при пересечении границы активной зоны будет обратным (то есть в активную зону из отражателя), то есть будет иметь место «втечка» тепловых нейтронов в активную зону из отражателя.

А.з. Отраж. А.з. Отраж. А.з. Отраж.

r r r

а) grad Ф  0 («втечка») б) grad Ф  0 (утечка) в) grad Ф = 0 («Слепая диффузия»

Рис.9.2. Три возможные ситуации в распределении плотности потока

тепловых нейтронов на границе активной зоны с отражателем.

Если градиент плотности потока тепловых нейтронов на границе активной зоны с отражателем имеет отрицательный знак (то есть функция Ф(r) при переходе границы убывает), то вектор плотности тока тепловых нейтронов направлен из активной зоны в отражатель, а это значит, что имеет место утечка тепловых нейтронов из активной зоны (рис.9.2б).

Принципиально возможен и третий вариант, когда величина градиента плотности потока тепловых нейтронов на границе активной зоны с отражателем нулевая (рис.9.2в). Это случай так называемой «слепой диффузии», когда количества тепловых нейтронов, пересекающих границу активной зоны в противоположных направлениях, равны, и не имеют места ни утечка, ни втечка тепловых нейтронов; иначе говоря, имеет место нулевая утечка

Какой из этих трёх случаев имеет место в реальных энергетических реакторах АЭС? - Случай (б): окружение реактора отражателем приводит к простому (существенному!) снижению градиента плотности потока тепловых нейтронов на границе активной зоны. Величина максимума "всплеска" плотности потока тепловых нейтронов в от-

ражателе в водо-водяных и в уран-графитовых реакторах значительно меньше величины максимального значения плотности потока тепловых нейтронов в объёме активной зоны реактора (рис.9.3а).

Однако, известен тяжеловодный реактор (с отражателем из той же тяжёлой воды D2O), у которого максимумы "всплесков" Ф в отражателе выше максимума Ф внутри активной зоны, и градиент плотности потока тепловых нейтронов на границе активной зоны с отражателем имеет положительный знак (рис.9.3б).

а) б)

Рис.9.3.Радиальные распределения плотности потока тепловых нейтронов

в легководном ВВР (а) и в реакторе с тяжеловодным отражателем (б).

У реактора с тяжеловодным отражателем градиент плотности потока тепловых нейтронов на границах активной зоны положителен, а это значит, что работающая активная зона, испытывая утечку эпитепловых нейтронов, непрерывно пополняется тепловыми нейтронами из отражателя.

Ещё раз подчеркнём: в классическом энергетическом тепловом реакторе с легководным или графитовым замедлителем отражатель (который выполняется, как правило, из того же материала, что и основной замедлитель активной зоны) не ликвидирует полностью утечку тепловых нейтронов, а лишь уменьшает её. Поэтому величина вероятности избежания утечки тепловых нейтронов в ВВЭР и РБМК лежит в пределах от 0.990 до 0.996, в то время как вероятности избежания утечки замедляющихся нейтронов в них имеют намного более низкие значения (pз  0.88  0.92).

И так как утечка тепловых нейтронов в реакторе с отражателем меньше, чем без отражателя, критический реактор с отражателем имеет меньший размер, чем критический реактор того же состава без отражателя.