Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДПА физ.docx
Скачиваний:
14
Добавлен:
03.09.2019
Размер:
2 Mб
Скачать

20. Дифракція світла. Дифракційна решітка та її застосування

Дифракція світла - явище огинання перешкод світловими хвилями, які поширюються в неоднорідному середовищі. Дифракція спостерігається під час проходження світла через малі отвори чи огинання світлом перешкод, розміри яких малі (співмірні) порівняно з довжиною хвилі.

Явище відхилення світла від прямолінійного поширення називається дифракцією світла. Оскільки довжина світлової хвилі є дуже малою, то і розміри перешкод чи щілини мають бути малими. Наприклад, під час проходження монохроматичного світла через круглий отвір, розмір якого сумірний з довжиною падаючих світлових хвиль, на екрані навколо центральної світлової плями спостерігаються темні і світлі кільця, що чергуються (рис. 6.39).

Якщо таке саме світло проходить через вузьку щілину, то матимемо маку картину, зображену на рис. 6.40. Поява світлих і темних кілець, що чергуються, в ділянці геометричної тіні французький фізик Френель пояснив інтерференцією світлових хвиль, які надходять у результаті дифракції із різних точок отвору в одну точку на екрані.

Особливо чітку дифракційну картину утворюють дифракційні грати. Дифракційні граки - це сукупність дуже вузьких щілин, розділених непрозорими проміжками (рис. 6.41).

Якщо a - ширина прозорої частини, а b - непрозорої, то:

,

де l - ширина грат; N - кількість щілин.

Спрямуємо на грати паралельний пучок променів. Кожна точка щілини буде відхиляти промені у всіх напрямах, зокрема, і під кутом φ від початкового напряму. Якщо ці промені зібрати на екрані, наприклад, за допомогою збиральної лінзи, то можна отримати підсилення чи послаблення світла - дифракційний максимум чи мінімум освітленості.

Із заштрихованого трикутника отримаємо різницю ходу:

Δd = d·sinφ.

Якщо в цю різницю ходу вкладеться ціла кількість довжин хвиль, то на екрані спостерігатиметься дифракційний максимум, а якщо непарна кількість півхвиль, - мінімум.

Таким чином, Δd = , а також Δd = d·sinφ, то для умови максимуму дифракційної гратки, отримаємо:

d·sinφ =                              (1)

де k = 1, 2, 3, …, n (ціле число),λ- довжина падаючої світлової хвилі.

Внаслідок дифракції на дифракційних гратах білого світла всі головні максимуми, крім центрального нульового максимуму, будуть забарвленими. Зі збільшенням довжини хвилі головні максимуми всередині розміщуються під великим кутами від центрального. Райдужна полоска, що містить сім кольорів - від фіолетового до червоного (підрахунок ведеться від центрального максимуму), називають дифракційним спектром.

Якщо відомо період грат d, і виміряно кут φ, під яким спостерігається максимум і порядок спектра k, тоді можна визначити довжину світлової хвилі:

.

Вона дорівнює: λч   8·10-7 м; λф   4·10-7 м.

Інші кольори мають проміжні значення.

Промисловість виготовляє дифракційні грати, які містять 50 штрихів/мм, 100 штрихів/мм, 600 штрихів/мм, 1200 штрихів/мм і дзеркальні грати з 6000 штрихів/мм.

21. Склад атомного ядра. Відкриття нейтрона. Ізотопи

Український фізик Іваненко і німецький фізик Гейзенберг 1932 року незалежно один від одного запропонували протонно-нейтронну модель ядра, згідно з якою ядро складається із протонів і нейтронів. Оскільки атом в цілому електронейтральний, а заряд протона дорівнює модулю заряду електрона, то число протонів у ядрі дорівнює числу електронів в атомній оболонці. Відповідно число протонів в ядрі дорівнює атомному номеру елемента в періодичній системі елементів Менделєєва. А кількість нейтронів дорівнює різниці між атомною масою ізотопу і значенням порядкового номера.

Суму числа протонів Z і числа нейтронів N називають масовим числом А; воно дорівнює: A = Z + N.

Маси протонів і нейтронів приблизно однакові і дорівнюють 1 а. о. м. Маса електрона набагато менша від маси ядра. Визначити число протонів і нейтронів в ядрі атома дуже просто. Наприклад:

Усі хімічні елементи, які знаходяться в одному рядку таблиці елементів Менделєєва, мають однакові хімічні властивості, але фізичні властивості їх трохи відрізняються. Такі елементи називаються ізотопами. Ізотопи мають ядра атомів з одним і тим самим значенням Z, але різними кількостями N. Натепер відомо ізотопи всіх хімічних елементів. Наприклад, водень має три ізотопи:

- водень звичайний - основний ізотоп стабільний.

- дейтерій (тяжкий водень); входить як домішка до природного водню її вміст становить (1/4500 частину).

- надтяжкий водень - тритій; отримують штучним шляхом, - радіоактивний.

Між протонами і нейтронами в ядрі діють значні сили кулонівського відштовхування, але ядро не розлітається, оскільки протони і нейтрони в ядрі утримують могутні ядерні сили. Це най потужніші сили в природі, що є мірою сильної взаємодії. Їх характерна особливість - вони діють на дуже малих відстанях, що приблизно дорівнюють розміру ядра см.

Щоб вибити нуклон із ядра, потрібно виконати величезну роботу, тобто передати ядру енергію зв'язку. Це - енергія, яка потрібна для повного розщеплення ядра на нуклони, або енергія, яка виділяється під час утворення ядра із окремих частинок.

Оскільки остаточну теорію ядерних сил поки що не створено, то енергію зв'язку розраховують за формулою Ейнштейна: .

Але точні вимірювання мас ядер показують,

,

Існує так званий дефект мас:

Підставивши значення дефекту мас в рівняння для енергії, отримаємо формулу для визначення енергії зв'язку:

Ядра, з частинок, під дією ядерних сил на малих відстанях прямують одна до одної з величезним прискоренням. Випромінювані при цьому - кванти мають енергію Е і масу .

Важливу інформацію про властивості ядер містить залежність енергії зв'язку від масового числа А.

Питомою енергією зв'язку називають енергію зв'язку, яка припадає на один нуклон.

Питома енергія зв'язку елементів масові частки яких 50-60 найбільша, тому ядра цих елементів найбільш стійкі.

Питома енергія зв'язку тяжких ядер зменшується за рахунок зростаючої із збільшенням Z кулонівської енергії відштовхування, оскільки сила Кулона F намагається розірвати ядро.

На відміну від хімічних реакцій, під час яких змін зазнають лише молекули, а ядра атомів залишаються без змін, то час ядерних реакцій змін зазнають самі атомні ядра. При цьому замість одних хімічних елементів утворюються інші. Отже зміну атомних ядер у результаті їх взаємодії з елементарними частинками між собою називають ядерними реакціями.

Ядерні реакції бувають як штучні, так і природні. Штучні ядерні реакції відбуваються за допомогою ядер дейтерію - дейтронів, a-частинок інших важких ядер, які розганяють до великих швидкостей, щоб під час зближення можна було подолати кулонівські сили відштовхування і ввійти в зону ядерних сил. У результаті злиття початкових ядер на деякий час утворюється комбіноване ядро, що згодом розпадається на уламки, які кулонівські сили розганяють до світлових швидкостей, близьких до швидкості світла.

Першу ядерну реакцію на швидких протонах було здійснено 1932 року, коли вдалося розщепити літій на дві a-частинки:

Серед різних ядерних реакцій особливо важливу роль у житті людини відіграють ланцюгові реакції поділу деяких важких ядер. Німецькі фізики О. Ган і Ф. Шрассман 1938 року вперше провели ядерну реакцію поділу ядер урану під час бомбардування їх нейтронами. У результаті цієї реакції ядро атома урану поділилось на два нерівні уламки, і вивільнилось 2 чи 3 нейтрони і величезна енергія.

Нейтрон відкрив 1932 року англійський фізик Д. Чедвік. Його можна отримати внаслідок попадання a - частинки в ядро берилію:

У рівнянні цієї ядерної реакції - символ нейтрона; його заряд дорівнює нулю, а відносна маса - приблизно одиниці. Нейтрон - нестабільна частинка: вільний нейтрон за час близько 15 хв розпадається на протон, електрон і нейтрино - частинку, що не має маси спокою.

Відкриття нейтрона стало поворотним етапом у дослідженні ядерних реакцій. Оскільки нейтрони не мають заряду, то вони без перешкод проникають в атомні ядра і спричинюють їх перетворення. Наприклад, спостерігається така реакція: