Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1864.doc
Скачиваний:
81
Добавлен:
06.09.2019
Размер:
1.14 Mб
Скачать

4.2. Нулевой метод

Нулевой метод измерения является разновидностью мето­да противопоставления, в котором результирующий эффект воз­действия измеряемой величины и меры на прибор сравнения доводят до нуля. Функциональная схема нулевого метода измерения приведена на рис. 4.1.

Здесь измеряемая величина X и мера X0 воздействуют на два входа измерительного прибора сравнения. Результирующий эффект воздействия определяется разностью этих величин, т.е.

 = X – X0 .

Изменяя величину, воспроизводимую мерой, можно довести величину  до 0. Это обстоятельство отмечается индикатором нуля. Если  = 0, то Х = Х0, результат измерения Y есть полученное значение меры, т.е. Y = X0.

Поскольку на индикатор нуля воздействует разность вели­чин, то его предел измерения может быть выбран меньшим, а чувствительность большей, чем у прибора для измерения X методом непосредственной оценки. Точность индикации равенства двух величин может быть весьма большой, а это ведет к повышению точности измерения. Погрешность измерения нулевым методом определяется погрешностью меры и погрешностью индикации нуля.

Нулевой метод измерения требует обязательного применения многозначных мер. Точность таких мер всегда хуже однозначных мер.

4.3. Дифференциальный метод

Дифференциальный метод представляет собой метод сравнения с мерой, в котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, при котором измеряется разность между этими двумя величинами. На рис. 4.2. показана функциональная схема дифференциального метода.

Здесь мера имеет постоянное значение Х0, разность измеряемой величины Х и меры Х0, т.е.  = Х – Х0, не равна ну­лю и измеряется измерительным прибором. Результат измерения на­ходится как

Y = X0 +  .

То обстоятельство, что здесь измерительный прибор измеряет не всю величину Х, а только её часть  позволяет уменьшить влияние на результат измерения погрешности измерительного прибора, причем влияние погрешности измерительного прибора тем меньше, чем меньше разность .

Действительно, при измерении напряжения U = 97 В вольтметром непосредственной оценки с пределом измерения 100 В и допущенной относительной погрешности измерения этого напряжения 1 % мы получаем абсолютную погрешность измерения 1= 97  0,01 = 0,97  1 В. Если же мы будем измерять это напряжение дифференциальным методом с использованием образцового источника напряжения U0 = 100 В, то разность напряжений U – U0 = (97–100) В = – 3 В мы можем измерить вольтметром с пределом измерения всего 3 В. Пусть относительная погрешность измерения этого напряжения будет также равна 1 %. Это даёт абсолютную погрешность измерения напряжения 3 В, равную 2 = 3  0,01 = 0,03 В. Если эту погрешность привести к измеряемому напряжению U, мы получим относительную погрешность измерения напряжения, равную 2/U = 0,03/97  0,0003 (0,03 %), т.е. приблизительно в 30 раз меньше, чем при измерении напряжения U методом непосредственной оценки. Это увеличение точности измерения произошло потому, что в первом случае прибором была измерена почти вся величина с относительной погрешностью в 1 %, а во втором случае измеряется не вся величина, а только её 1/30 часть.

В этих расчетах не учитывалась погрешность меры, кото­рая полностью входит в результат измерения. Следовательно, при малых разностных величинах  точность измерения дифферен­циальным методом приближается к точности измерения нулевым ме­тодом и определяется лишь погрешностью меры. Кроме того, диф­ференциальный метод не требует меры переменной величины.

В приведенном примере измерения напряжения дифферен­циальным методом использовалось непосредственное сравнение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]