Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полевая геофизика (без сейсмики).doc
Скачиваний:
145
Добавлен:
15.09.2019
Размер:
13.69 Mб
Скачать

Контрольные вопросы.

  1. Физическая сущность метода естественного электрического поля (ЕП). Способы измерений и условия их применения.

  2. Как определить все параметры двухслойного геоэлектрического разреза, если полевая кривая совпадает с палеточной кривой .

  3. Физическая сущность и установки в методе электропрофилирования.

  4. Чему равно значение потенциала в точке М от электродов А и В? (записать формулу). Покажите токовые и эквипотенциальные линии от электродов А и В.

  5. Нарисуйте вид кривой ВЭЗ, если геоэлектрический разрез имеет вид: 1=120 Ом*м , 2=50 Ом*м , 3=200 Ом*м, 4=80 Ом*м. Какой это тип кривой и разрез?

  6. Физическая сущность метода и установки, применяемые в методе ВЭЗ.

  7. Покажите, какой вид имеют аномалии естественного поля (ЕП) над скоплениями сульфидов (съемка способом потенциала). Как определить, где находится рудный объект?

  8. В чем разница между истинным и кажущимся удельными электрическими сопротивлениями ?

  9. Что понимается под удельным электрическим сопротивлением и удельной проводимостью в электроразведке и каковы единицы измерения этих величин?

  10. Запишите формулу для определения разности потенциалов между электродами MN от электрода А (электрод В можно считать удаленным на бесконечность). Покажите токовые и эквипотенциальные линии от электрода А.

  11. В каких единицах измеряется значение коэффициента установки? Покажите - почему?

  12. Для симметричной установки АМNB c коэффициентом k = 3.14 м на точке получено значение k = 52 Ом м. Чему будет равно значение k , если АМ=BN=40 м, MN=20 м, V=300mB, J=0.002 A?

  13. Определите, в соответствии с вашим вариантом, можно ли считать указанную в табл.1 установку трехэлектродной, если среднее удельное сопротивление среды равно СР, и ток равен J. Питающий электрод можно считать удаленным на бесконечность, если его потенциал в точке N не превышает 3 % значения потенциала в этой точке от ближнего питающего электрода.

Таблица 1

Вариант

Установка

СР Ом м

J , А

1

A10M5N120B

1000

0.08

2

A50M20N400B

150

0.1

3

A80M15N100B

900

0.07

4

A60M30N80B

50

0.09

5

A40M20N300B

200

0.05

6

A20M6N100B

500

0,06

Вариант

I

II

III

IV

Установ-ка

A10M5N120B

A50M20N400B

A80M15N100B

A60M30N80B

ср.

1000

150

900

50

J

0.08

0.1

0.07

0.09

  1. Сущность электрического профилирования и зондирования (что общее и в чем отличие?).

  2. Какие разрезы называются двухслойными, трехслойными и какими параметрами они характеризуются?

  3. Почему кривые ВЭЗ изображаются в билогарифмическом масштабе?

  4. В каких единицах измеряется истинное и кажущееся удельное электрическое сопротивление?

  5. Что такое коэффициент установки и в каких единицах он измеряется?

  6. Что понимается под качественной и что - под количественной интерпретацией кривых ВЭЗ?

  7. Поясните сущность метода ВП. По каким признакам на графиках измеряемых параметров мы можем судить о наличии электронно-проводящего объекта?

  8. Какие параметры измеряются и определяются в методе частотного зондирования (ЧЗ)? Чем метод ЧЗ отличается от ВЭЗ?

  9. Поясните сущность магнитотеллурического зондирования. Чем здесь достигается изменение глубины исследования? Чем метод МТЗ отличается от ЕП?

  10. За счет чего возможно применение методов электроразведки при поисках нефтегазовых залежей?

5. Радиометрия и ядерная геофизика

5.1. Общие сведения о естественной

и искусственной радиоактивности

5.1.1. Естественная и искусственная радиоактивность

Ядра некоторых изотопов могут самопроизвольно превращаться в ядра других элементов с выделением энергии. Этот процесс называют радиоактивностью. Естественная радиоактивность впервые обнаружена на солях урана в 1896г. французским физиком А. Беккерелем и исследована затем Пьером и Марией Кюри. Было установлено, что радиоактивный распад сопровождается испусканием α-, β-, и γ-лучей. Большинство естественных радиоактивных элементов образует радиоактивные семейства, где каждый радиоактивный элемент возникает из предыдущего и, в свою очередь, превращается в последующий. Процесс радиоактивных превращений продолжается до тех пор, пока не образуется устойчивый изотоп. Для некоторых естественных радиоактивных элементов (40К, 87Rb, 152Sm и др.) распад ограничивается одним звеном превращения.

Искусственная радиоактивность открыта в 1934г. французскими учеными Ирен и Фредериком Жолио-Кюри. Они установили, что при облучении стабильных элементов α-частицами образуются радиоактивные изотопы фосфора, азота и кремния – элементов, не име6ющих естественных радиоактивных изотопов. В дальнейшем при облучении стабильных элементов α-частицами, протонами, дейтронами и нейтронами, были получены радиоактивные изотопы всех химических элементов, начиная от водорода и кончая ураном, причем для большинства элементов получено несколько радиоактивных изотопов.

Существуют следующие основные виды распада природных радиоактивных элементов.

1. Испускание α-частицы, представляющей собой положительно заряженное ядро гелия с атомным номером Z=2 и массовым числом М=4. Ядро, образовавшееся в результате α-распада, имеет массовое число на четыре единицы, а порядковый номер на две единицы меньше, чем у исходного ядра, например:

.

2. Испускание отрицательных или положительных α-частиц - электрона (обозначается е- или β-) или позитрона (е+ или β+), представляющих собой заряженные частицы с примерно одинаковой массой (me=0,9035-10-27г), составляющей всего 1/1835 часть массы протона. При этом массовое число продукта распада такое же, как у исходного ядра, а порядковый номер увеличивается или уменьшается на одну единицу, например:

.

В приведенных записях реакций отмечена важная особенность β-распада: он всегда сопровождается испусканием нейтральной частицы с нулевой массой — нейтрино v при β+-распаде и антинейтрино v при β--распаде. Очень часто основные (обязательные) продукты распада, α- и β-частицы, а также нейтрино (антинейтрино) , уносят не всю энергию реакции распада. Избыток энергии испускается в виде одного или нескольких -квантов

.

3. Захват ядром электрона одной из оболочек атомов. В результате этого процесса, называемого электронным захватом (ЭЗ), атомный номер (как и при β+-распаде) уменьшается на одну единицу, а энергия реакции уносится нейтрино и в некоторых случаях также -γ-излучением, например:

.

При занятии вакантного места на электронной оболочке другим электроном возникает также характеристическое рентгеновское излучение элемента — продукта реакции.

Электронный захват с К-, L-оболочек принято называть соответственно (К-захватом, L-захватом и т. д.

4. Самопроизвольное деление некоторых тяжелых ядер (238U, 232Th) на две части, обычно с неодинаковой массой. При самопроизвольном делении помимо осколков деления излучаются два или три нейтрона, а иногда и другие частицы. Вновь образовавшиеся ядра обычно нестабильны и распадаются путем испускания нескольких нейтронов и β--частиц. В ядерной геофизике вызывает интерес испускание некоторыми продуктами деления так называемых запаздывающих нейтронов, сопровождающих β-распад, например:

Регистрацию таких нейтронов используют для определения содержания урана.

5. Испускание одного или двух протонов, при котором масса и заряд уменьшаются на одну или две единицы, наблюдается лишь у части искусственных радиоактивных изотопов с исключительно большим дефицитом нейтронов (соответственно с избытком протонов), например:

.

Этот вид распада недавно открыт советскими учеными, и его значение для ядерной геофизики еще не изучено.

Иногда к радиоактивному распаду относят также переход некоторых ядер из метастабильного (относительно устойчивого возбужденного) состояния в основное с испусканием одного или нескольких γ-квантов. При этом ядерного превращения (в смысле изменения его массы или заряда) не происходит. Однако закон уменьшения числа активных (метастабильных) ядер совпадает с законом радиоактивного распада, что и оправдывает отнесение этого процесса, называемого изомерным переходом (ИП), к особому виду радиоактивности.

Возбужденное ядро-изомер некоторого элемента МХ принято обозначать МmХ. Изомеры обычно получают возбуждением ядер при бомбардировке ядерными частицами или иногда как промежуточный продукт при распаде некоторых ядер. Например, при распаде UX1 кроме изотопа 234Pa(UZ) образуется его изомер 234mPa(UX2), имеющий другой период полураспада .

Обычно радиоактивный элемент распадается одним из перечисленных выше способов. Однако многие из них могут распадаться различными путями. Так, например, 226Ra в 99 % случаев превращается в 222Rn, излучая α-частицу с энергией 4,9 МэВ. Однако наблюдается переход радия в радон и с испусканием двух частиц: α -частицы с энергией 4,7 МэВ и γ-кванта с энергией 0,2 МэВ. Некоторые радиоактивные элементы распадаются, образуя два или более новых элементов. Так, около 12 % атомов 40К испытывают К-захват и превращаются в атомы аргона 40Аr с последующим излучением γ -квантов с энергией 1,46 МэВ. Остальные 88 % 40К превращаются в атомы кальция 40Са с излучением β-частицы. Распад искусственных радиоактивных элементов, как правило, сопровождается испусканием электронов (или позитронов) и γ –лучей.

В природе обнаружено более 50 естественных радиоактивных элементов. Наиболее распространены тяжелые элементы, входящие в состав радиоактивных семейств урана , актиноурана AcU и тория ( ,рис. 5.1). В ничтожно малых количествах в природе встречаются элементы семейства нептуния , распад которых ограничивается одним звеном превращений. Из анализа рис. 5.1 следует, что характер распада этих семейств имеет много общего.

Рис. 5.1. Схема радиоактивных превращений семейств урана (а),

тория (б) и актиноурана (в).

Родоначальники семейств характеризуются самыми большими массовыми числами и относятся к наиболее долгоживущим. Распад всегда протекает в сторону образования все легких элементов В середине цепи превращений каждого семейства имеются радиоактивные газы – эманации, которые относятся к группе инертных. Далее образуются группы короткоживущих элементов, часть атомов которых испытывает α-распад, а другая часть распадается с испусканием β-частиц. Эти элементы образуют ответвления рядов (вилки). Конечным продуктом распада всех трех семейств являются стабильные изотопы свинца , и , которые принято обозначать также RaG, AcD и ThD соответственно.