Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_na_8-9_ballov.docx
Скачиваний:
1
Добавлен:
23.09.2019
Размер:
1.08 Mб
Скачать

7.Линейные операции над векторами.

Сложение вектора производится по правилу параллелограмма: векторы и сносятся в общую точку , на них строят параллелограмм и его диагональ называют суммой векторов и .

Поскольку вектор равен , то можно дать другое правило нахождения суммы (правило треугольника): суммой векторов и является вектор, идущий из начала в конец , если вектор приложен к концу вектора , т.е. .

Это правило распространяется на любое число слагаемых: если векторы образуют ломаную , то суммой этих векторов является вектор , замыкающий эту ломаную, т.е.:

В частности, если ломаная замыкается, т.е. , то сумма ее звеньев равна нуль-вектору .

Сложение векторов подчиняется обычным законам сложения ‑ сочетательному и переместительному, а также обладает обратной операцией – вычитанием.

Разностью двух векторов и , отложенных от одной точки является вектор, направленный из конца вычитаемого вектора в конец уменьшаемого вектора , т.е. (Рис. 4.2.). Это правило следует из формулы (1): т.к. , то .

Векторы можно не только складывать и вычитать, но и умножать на числа (скаляры).

Вектор равен , где ‑ некоторое число, если: коллинеарен ;длина вектора отличается от длины вектора в раз, т.е. ,при , и направлены в одну сторону, при ‑ в разные.

Произведение вектора на скаляр обладает следующими свойствами: ; ; ; ; .

8.Скалярное произведение векторов. Свойства.

Скалярными произведением двух векторов и называется число, равное произведению их длин на косинус угла между ними: .

Скалярное произведение обладает следующими свойствами:

  1. ;

  2. ;

  3. ;

  4. Если и ‑ ненулевые векторы, то тогда и только тогда, когда эти векторы перпендикулярны. Если , то угол между и - острый, если , то угол - тупой;

  5. Скалярный квадрат вектора равен квадрату его длины, т.е. .

Следовательно, .

9. Геометрический смысл скалярного произведения: скалярное произведение вектора на единичный вектор равно проекции вектора на направление, определяемое , т.е. .

Из определения скалярного произведения вытекает следующая таблица умножения ортов :

.

Если векторы заданы своими координатами и , т.е. , , то, перемножая эти векторы скалярно и используя таблицу умножения ортов, получим выражение скалярного произведения через координаты векторов:

.

10.Векторное произведение векторов. Свойства.Векторным произведением вектора на вектор называется вектор , длина и направление которого определяется условиями: , где ‑ угол между и ; перпендикулярен каждому из векторов и ; направлен так, что кратчайший поворот от к виден из его конца совершающимся против часовой стрелки.Векторное произведение обладает следующими свойствами: ; ; ;Векторное произведение равно нулю (нуль вектору) тогда и только тогда, когда и коллинеарны. В частности, для любого вектора ;Если и неколлинеарны, то модуль векторного произведения равен площади параллелограмма построенного на этих векторах, как на сторонах.

11.Векторное произведение в координатной форме. Из первых трех свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов. Надо только следить за тем, чтобы порядок следования множителей не менялся.

Основные орты перемножаются следующим образом:

.

Если и , то c учетом свойств векторного произведения векторов, можно вывести правило вычисления координат векторного произведения по координатам векторов-сомножителей:

.

Если принять во внимание полученные выше правила перемножения ортов, то:

(4.11)

Более компактную форму записи выражения для вычисления координат векторного произведения двух векторов можно построить, если ввести понятие определителя матрицы.

Рассмотрим частный случай, когда вектора и принадлежат плоскости , т.е. их можно представить как и .

Если координаты векторов записать в виде таблицы следующим образом: , то можно сказать, что из них сформирована квадратная матрица второго порядка, т.е. размером , состоящая из двух строк и двух столбцов. Каждой квадратной матрице ставится в соответствие число, которое вычисляется из элементов матрицы по определенным правилам и называется определителем. Определитель матрицы второго порядка равен разности произведений элементов главной диагонали и побочной диагонали:

.

В таком случае:

Абсолютная величина определителя, таким образом, равна площади параллелограмма, построенного на векторах и , как на сторонах.

Если сравнить это выражение с формулой векторного произведения (4.7), то:

(4.12)

Это выражение представляет собой формулу для вычисления определителя матрицы третьего порядка по первой строке.

Таким образом:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]