Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GIDRAVLIKA.doc
Скачиваний:
34
Добавлен:
25.09.2019
Размер:
2.04 Mб
Скачать

28) Общая формула для потерь напора по длине при установившемся равномерном движении жидкости. Коэффициент Дарси.

Как показывают опыты, во многих, но не во всех случаях гидравлические потери приблизительно пропорциональны скорости течения жидкости во второй степени, поэтому в гидравлике принят следующий общий способ выражения гидравлических потерь полного напора в линейных единицах:

, или в единицах давления (1.55)

(1.56)

Такое выражение удобно тем, что включает в себя безразмерный коэффициент пропорциональности , называемый коэффициентом потерь Дарси или коэффициентом сопротивления.

29) Основное уравнение равномерного движения.

Выделим некоторый отсек элементарной струйки (рис. 1.19).

рис. 1.19 Объем элементарной струйки

Во вход в это сечение в единицу времени втекает определённый объём жидкости, равный

(1.57)

а через выход вытекает объём равный

(1.58)

Примем, что жидкость несжимаема и что в ней невозможно образование незаполненных жидкостью пространств - пустот, т.е. будем считать, что соблюдается условие сплошности или неразрывности движения. Учитывая, что форма элементарной струйки с течением времени не изменяется и поперечный приток в струйку или отток из неё отсутствуют, приходим к выводу, что элементарные расходы жидкости, проходящие через вход и выход данного отрезка должны быть одинаковы. Таким образом,

(1.59)

(1.60)

Подобные соотношения можно составить для любых отсеков элементарной струйки. Поэтому в более общем виде получаем, что всюду вдоль струйки

(1.61)

Полученное уравнение называется уравнением неразрывности; оно является первым основным уравнением гидродинамики.

30) Касательные напряжения. Обобщенный закон Ньютона.

Касательное напряжение в жидкости зависит от её рода и характера течения и при слоистом течении изменяется прямо пропорционально так называемому поперечному градиенту скорости. Таким образом

где -коэффициент пропорциональности, получивший название динамической вязкости жидкости; -приращение скорости, соответствующее приращению координаты .

Поперечный градиент скорости определяет изменение скорости, приходящееся на единицу длины в направлении нормали к стенке и, следовательно, характеризует интенсивность сдвига жидкости в данной точке (точнее -это модуль градиента скорости; сам градиент – вектор).Суть вязкости заключается в возникновении трения между движущимися слоями жидкости определяется по формуле Ньютона:

31) Ламинарный и турбулентный режимы движения жидкости. Критическое число Рейнольдса.

Опыты показывают, что возможны два режима или два вида течения жидкостей и газов в трубах: ламинарный и турбулентный.

Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсаций скоростей и давления. При таком течении все линии тока определяются формой русла, по которому течёт жидкость. При ламинарном течении жидкости в прямой трубе постоянного течения все линии тока направлены параллельно оси трубы, т.е. прямолинейно; отсутствуют поперечные перемещения жидкости.

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. Движение отдельных частиц оказывается подобным хаотическому, беспорядочному движению молекул газа. При турбулентном течении векторы скоростей имеют не только осевые, но и нормальные к оси русла составляющие, поэтому наряду с основным продольным перемещением жидкости вдоль русла происходят поперечные перемещения (перемешивание) и вращательное движение отдельных объёмов жидкости. Этим и объясняются пульсации скоростей и давления.

Режим течения данной жидкости изменяется в данной трубе примерно при определённой средней по сечению скорости течения Vкр, которую называют критической. Как показывают опыты, значение этой скорости прямо пропорционально кинематической вязкости и обратно пропорционально диаметру d трубы, т.е.

(1.63)

Входящий в эту формулу безразмерный коэффициент пропорциональности одинаков для всех жидкостей и газов, а также для любых параметров труб. Это означает, что изменение режима течения происходит при определённом соотношении между скоростью, диаметром и вязкостью :

(1.64)

Этот результат согласуется с изложенной выше теорией гидродинамического подобия, и вполне закономерно, что именно число Рейнольдса является критерием, определяющим режим течения в трубах.

Как показывают опыты, для труб круглого сечения .

Таким образом, критерий подобия Рейнольдса позволяет судить о режиме течения жидкости в трубе. При течение является ламинарным, при - турбулентным.

Смена режима течения обусловлена тем, что одно течение при достижении критического числа Рейнольдса теряет устойчивость, а другое - приобретает.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]