Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_Ekzamen_2_semestr2003.doc
Скачиваний:
22
Добавлен:
27.09.2019
Размер:
2.1 Mб
Скачать

26. Диэлектрики в электрическом поле. Векторы поляризации и электрической индукции. Диэлектрическая проницаемость.

Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют проводники и диэлектрики.

Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы.

Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика. В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества.

Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q, то напряженность поля создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

27. Теорема Гаусса для электростатического поля в диэлектрике: Энергия и объемная плотность энергии электрического поля

Теорема Гаусса для электростатического поля в диэлектрике:

Диэлектрики - это вещества, которые практически не проводят электрический ток. Поведение диэлектриков в электрическом поле определяется их внутренним строением. Как известно, мельчайшей частицей вещества, сохраняющей его химические свойства, является молекула. Молекулы состоят из атомов, в состав которых входят положительно заряженные ядра и отрицательно заряженные электроны. В целом молекулы нейтральны. Согласно теории ковалентных связей устойчивость молекул достигается путем образования одной или нескольких пар электронов, которые становятся общими для соединяющихся атомов, т. е. входят одновременно в состав оболочек двух атомов. Теорема Гаусса — основная теорема электродинамики, которая применяется для вычисления электрических полей, входит в систему уравнений Максвелла. Она выражает связь между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью.

E=r/2πε0ε

E=б/2ε0ε

E=q/4 πε0εr^2

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь любую замкнутую поверхность равен алгебраической сумме свободных электрических зарядов, заключенных внутри этой поверхности. В такой форме теорема Гаусса верна для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

QΣ = Q + Qb,где

P— вектор поляризации диэлектрика.

Энергия и объемная плотность энергии электрического поля

Это физическая величина, численно равная отношению потенциальной энергии поля, заключенной в элементе объема, к этому объему. Для однородного поля объемная плотность энергии равна . Для плоского конденсатора, объем которого Sd, где S - площадь пластин, d - расстояние между пластинами, имеем

С учетом, что и =>

или

28. Электрический ток. Сила и плотность тока. Электрическое сопротивление проводника.

Электрическим током называется направленное (упорядоченное) движение заряженных частиц. Электрический ток в проводниках различного рода представляет собой либо направленное движение электронов в металлах (проводники первого рода), имеющих отрицательный заряд, либо направленное движение более крупных частиц вещества — ионов, имеющих как положительный, так и отрицательный заряд — в электролитах (проводники второго рода), либо направленное движение электронов и ионов обоих знаков в ионизированных газах (проводники третьего рода). За направление электрического тока условно принято направление движения положительно заряженных частиц. Для существования электрического тока в веществе необходимо:

1наличие заряженных частиц, способных свободно перемещаться по проводнику под действием сил электрического поля;

2наличие источника тока, создающего и поддерживающего в проводнике в течение длительного времени электрическое поле.

Количественными характеристиками электрического тока являются сила тока I и плотность тока j. Сила тока — скалярная физическая величина, определяемая отношением заряда Δq, проходящего через поперечное сечение проводника за некоторый промежуток времени Δt, к этому промежутку времени. I=q\t

Единицей силы тока в СИ является ампер (А).

Плотность тока j — это векторная физическая величина, модуль которой определяется отношением силы тока I в проводнике к площади S поперечного сечения проводника, т.е.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Как следует из формулы (1), . Направление вектора плотности тока совпадает с направлением вектора скорости упорядоченного движения положительно заряженных частиц. Плотность постоянного тока постоянна по всему поперечному сечению проводника.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]