Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VM.docx
Скачиваний:
6
Добавлен:
27.09.2019
Размер:
1.28 Mб
Скачать

Геометр. Смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

f (x,y)=f(x0,y0)+A∆x+B∆x+o(ρ); z0=f(x0,y0); z=f(x,y); ∆x=x-x0, ∆y=y-y0;

z0=z0+A(x-x0)+B(y-y0); z0-z=A(x-x0)+B(y-y0);

z0-z=fx‘(x0,y0)(x-x0)+fy‘(x0,y0)(y-y0)-ур-ние касательн. плоскости в поверхности.

z=f(x,y) (x0,y0,z0).

Нормалью к поверхн. в данной точке М0(x0,y0,z0) назыв. прямая, проходящая через эту точку перпенд. к касат.

(x-x0)/fx‘(x0,y0)=(y-y0)/fy‘(x0,y0)=(z-z0)/(-1) – ур-ние нормали

(x-x0)/fx‘(x0,y0,z0)=(y-y0)/fy‘(x0,y0,z0)=(z-z0)/fz‘(x0,y0,z0)

Билет 27

Определение . Частные производные второго порядка функции z=z(x,y) определяются так:

Их оказалось четыре. Причем, при некоторых условиях на функции z(x,y) выполняется равенство:

Замечание. Частные производные второго порядка могут обозначаться и так:

Определение Частных производных третьего порядка - восемь (23):

и так далее.

Дифференциал высшего порядка функции одной переменной

Для функции, зависящей от одной переменной   второй и третий дифференциалы выглядят так:

Отсюда можно вывести общий вид дифференциала n-го порядка от функции  :

Билет 27.2

При вычислении дифференциалов высших порядков очень важно, что  есть произвольное и не зависящее от  , которое при дифференцировании по   следует рассматривать как постоянный множитель.

Дифференциал высшего порядка функции нескольких переменных

Если функция   имеет непрерывные частные производные второго порядка, то дифференциал второго порядка определяется так: .

Символически общий вид дифференциала n-го порядка от функции  выглядит следующим образом:

где , а    произвольные приращения независимых переменных . Приращения   рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему. Сложность выражения дифференциала возрастает с увеличением числа переменных.

Матрица этой квадратичной формы образована вторыми частными производными функции. Если все производные существуют, то

Определитель этой матрицы называется определителем Гессе, или гессианом.

Билет 28

Формула Тейлора для ф-ции неск.переменых.

u=f(M), k+1-раз. дифф в опр. т. М0€[М]

└→(Rk+1(N))

N отр М0М, u=f(M), k-1 раз.дифф. в окр. k раз дифф в т. М0.

;

Билет 29

Локальный экстремум ф-ции нескольких переменных.

u=f(M)=f(x1,x2,..,xn) опред. в окр. т.М0 (x10,x20,..,xn0).

Опр. Ф-ция u=f(M) имеет в т. М0 локальный максимум (мин.), если сущ. такая окр. в т. М0 в кот.при ММ0 выполняется след. нер-во: f(M)<f(M0), (f(M)>f(M0)).

u=f(M)-f(M0)<0, если М0 т.локал. мах.; ∆u>0, если М0 т.локал. мin.

Теор.(необход.усл.экстремума).

Если ф-ция u=f(M) дифф. в т.М0 и М0 – т.лок. max (min), то в этой точке:

Д ок-во: док-ем, что , u=f(x1,x2,..,xn)

x2=x20, М0 (x10,x20,..,xn0).

x3=x30,..

xn=xn0.

u=f(x10,x20,..,xn0) – имеет лок. экстремум в т.М0 .

Точка в кот. все частные призвод. u=f(M) – стационарн., таким обр. точками возможен. экстремума дифф. экстремума явл. стационар. т., но в стационар. т. ф-ция может и не иметь экстремума.

u=xy2, ux’=y2=0; uy’=2xy=0; M(0,0) стационар., но не явл. т.экстремума.

u=u(M)-u(M0)= xy2>(<)0

Кроме того, лок. экстр. ф-ция может иметь в т., в кот. она не дифф.:

z=1-√x2+y2; zx’=x/√x2+y2; zy’=y/√x2+y2; z(0,0)=1; z(∆x,∆y)<1

Теор.(Дост. усл. сущ. т. лок. экстр.)

Пусть u=f(u) дважды непр. дифф. в некот. окр.т.M0 и т.M0 – стационар.т., u=f(M) (df(M0)=0), тогда если для любых dx1,dx2,..dxn не равных одновременно 0:

d2f(M0)>0, то т.M0-т.лок.min; d2f(M0)<0, то т.M0-т.лок.max;

Д-во: f(M)=f(M0)+df(M0)/1!+d2f(N)/2!.

f(M0)=f(M)-f(M0)=df(M0)+d2f(N)/2!.

u=f(M) – дважды непр. дифф.

d2f(M0)>0→d2f(N)>0; d2f(M0)<0→d2f(N)<0;→ ∆f(M0)>0→

M0 – т.лок. min; M0 – т.лок. max;

  1. d 2f(M0)>0↔a11>0,

  2. d2f(M0)<0a11<0,

  3. Билет 29.2

Если d2f(M0) представляет собой закономерную квадрат. форму, то в т. M0 экстремума не будет. Если 2-ой дифф. представляет собой квадр. форму

Q(dx1,dx2,..dxn)>0 то полож.опр.

Q(dx1,dx2,..dxn)≥0 то казизнакополож.опр

х12+2х12х2222+(х11)2≥0; х1=-х2.

Билет 30

Условный экстремум ф-ции нескольких переменных.

Найти экстремум z, при ксловии, что x и y связаны следующим образом.

; x+y-1=0;

(*)

; ; ;

Метод множителя Ла-Гранджа.

(*) эквивалентна задаче: , где

-множитель Ла-Гранджа; - функция Ла-Гранджа.

Надо исследовать ф-ции Ла-Гранджа с учетом условия связи в диффиринциалах.

Наибольшее и наименьшее значение ф-ции в замкнутой области.

Если ф-я определена в замкнутой ограниченной области Д, то она достигает своего min и max значения, либо в стационарных точках внутри области, либо на ее границе.

Билет 31

Интегралы по фигуре от скалярной ф-ции.

Множество называется связанным, если любые 2 из них можно соединить линией, все точки которой принадлежат данному множеству.

Под геометрической фигурой понимается одно из следующих связных (включая границу) множеств точек (см. таблицу).

Диаметром d фигуры Ф называется максимальное расстояние между двумя ее точками.

Под мерой фигуры Ф понимается следующее

Если он существует, конечен и не зависит от способа построения интегральной суммы , то он называется интегралом по фигуре Ф от скалярной ф-ции Ф(Р) и обозначается

Теорема: Если на связной, ограниченной и содержащей граничные точки фигуре Ф скалярная ф-ция f(P) непрерывна, то интеграл по фигуре Ф существует.

Свойства интегралов по фигуре от скалярной ф-ции.

1).

2).

3).

4).

; - длина линии L; ; ;

5). Если то

6). Если , то

7). Если , то

8). Теорема о среднем: Если f(p) непрерывна на фигуре Ф, причем Ф – ограничена о содержит граничные точки, то

Геометрические и физические прилажения интегралов по фигуое от скалярной ф-ции.

- материальная фигура

- плотность материальной йигуры Ф

Билет 32.

Криволинейный интеграл 1го рода.

1). ; - диф-ма на [a,b];

; L: x=g(y);

;

2). ; x(t),y(t) – непрерывно диф-ма на ; L:

;

3). ; ; L:

4). ; ;L: ;

; ;

Билет 33.

Двойной интеграл.Его свойства.Вычисление двойного интеграла в декартовой и полярной системах координат.Геометрическое приложение двойного интеграла.

Двойные интегралы.

Определение: Если при стремлении к нулю шага разбиения области  интегральные суммы имеют конечный предел, то этот предел называется двойным интегралом от функции f(x, y) по области .

Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:

Условия существования двойного интеграла.

Сформулируем достаточные условия существования двойного интеграла.

Теорема. Если функция f(x, y) непрерывна в замкнутой области , то двойной интеграл существует.

Свойства двойного интеграла.

1)

2)

3) Если  = 1 + 2, то

4) Теорема о среднем. Двойной интеграл от функции f(x, y) равен произведению значения этой функции в некоторой точке области интегрирования на площадь области интегрирования.

5) Если f(x, y)  0 в области , то .

Вычисление двойного интеграла.

Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями х = a, x = b, (a < b), y = (x), y = (x), где и - непрерывные функции и

  , тогда

Теорема. Если функция f(x, y) непрерывна в замкнутой области , ограниченной линиями y = c, y = d (c < d), x = (y), x = (y) ((y) (y)), то

Билет 33.2

20. Выражение называется определителем Якоби или Якобианом функций f(u, v) и (u, v).

Формула замены переменной в двойном интеграле :

Двойной интеграл в полярных координатах.

Воспользуемся формулой замены переменных:

При этом известно, что

В этом случае Якобиан имеет вид:

Тогда

Здесь  - новая область значений,

Приложение двойного интеграла:

Вычисление площади .

Вычисление объемов тел. V=

Нахождение массы плоской пластинки m = , где - ф. задающая плотность данной пластинки

Билет 34.

Тройной интеграл.

: , z меняется от поверхности до поверхности.

Замечание: Области более сложного вида надо разбить на области более простого вида. Проектирование области V можно производить и на другую плоскость.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]