Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Е.А.Шахно. Физические основы применения лазеров...doc
Скачиваний:
91
Добавлен:
07.11.2019
Размер:
11.22 Mб
Скачать

Оптический пробой

Оптический пробой возникает при более высокой плотности мощности ~1011 Вт/см2. Из-за высокой напряженности поля происходит ионизация материи, что приводит к образованию плазмы и механических ударных волн. Оптический пробой может происходить в газах, жидкостях и твердых телах, в том числе в прозрачных средах, например, в воздухе.

Для оптического пробоя необходимы свободные электроны в зоне фокусировки лазерного пучка. Они могут быть генерированы, например, при многофотонной ионизации атомов и молекул. После образования свободных электронов происходит лавинообразное увеличение их количества при столкновении их с атомами и молекулами в поле действия излучения. При этом принципиально важна большая напряженность электромагнитного поля, а поглощение излучения в ткани для развития оптического пробоя не имеет значения. Вследствие лавинообразного увеличения количества свободных электронов и ионов происходит образование плазмы.

Плазма

Плазма может возникать не только путем оптического пробоя, но и тепловым способом, при нагревании поглощающей материи.

В обоих случаях возникающая плазма вызывает вторичные процессы.

1. Горячая плазма очень быстро расширяется, со скоростью, которая может в несколько раз превышать скорость звука в среде. Это расширение вызывает акустическую или ударную волну и тем самым приводит к механическому воздействию. Это явление используется в ряде медицинских технологий, например, для разрыва мембраны вторичной катаракты, для размельчения камней (литотрипсия).

2. Плазма излучает в видимом и ИК диапазоне.

3. Плазма экранирует поверхность от действующего лазерного излучения. Этим объясняется, в частности, насыщение интенсивности абляции при высокой плотности энергии.

4. Плазма разогревает поверхность облучаемой ткани, причем размеры области воздействия увеличиваются.

4. БИОФИЗИЧЕСКИЕ МЕХАНИЗМЫ ВЗАИМОДЕЙСТВИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ С БИОТКАНЬЮ

Излучение хирургического лазера вызывает повреждение или гибель живой ткани, а при достаточно высокой плотности поглощенной энергии – абляцию ткани. Под термином «абляция» понимают удаление вещества с поверхности тела. В хирургии, подчеркнем, имеется в виду эффект, проявляющийся непосредственно в процессе лазерного воздействия. Например, не является абляцией ликвидация участков ткани при фотодинамической терапии.

Механизм абляции и его параметры определяются:

1) характеристиками излучения (длина волны, длительность воздействия, мощность, частотные характеристики и т. д.)

2) физическими и структурными свойствами ткани (соотношение жидкого и плотного компонентов, физико-химический состав, термическая чувствительность клеток и макромолекул, кровоснабжение ткани и т.д.)

3) оптическими и теплофизическими свойствами ткани (коэффициент отражения, поглощение и рассеяние в ткани, ее теплоемкость и теплопроводность)

Взаимодействие лазерного излучения с биотканью, в том числе ее абляция, является одной из фундаментальных и интенсивно изучаемых проблем, хотя и еще не вполне решенных.

Исследованию физических механизмов взаимодействия лазерного излучения с биотканью посвящено большое количество работ. Наиболее полная систематизация приведена в работах А.И.Неворотина. На основании многочисленных исследований взаимодействия излучения лазеров с биотканью могут быть выделены 4 механизма взаимодействия, которые различаются друг от друга особенностями протекания процессов. Эти механизмы могут быть рассмотрены (в зависимости от мощности воздействия), как выше порога абляции ткани, так и ниже. Мы будем называть эти режимы соответственно абляционный режим воздействия излучения и субабляционный режим. Оба эти режима эффективно применяются в современной лазерной хирургии.