Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика с 40.docx
Скачиваний:
21
Добавлен:
09.11.2019
Размер:
311.13 Кб
Скачать

10. Работа. Энергия. Механическая энергия. Консервативные, диссипативные силы. Мощность.

работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек) тела или системы. Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.( Дж ) В физике механическая энергия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу. Химическая энергия — вид потенциальной энергии, запасённой в химических связях. Ядерная энергия — энергия, запасённая во взаимодействиях частиц в атомном ядре. Изучается в ядерной физике. Электромагнитная энергия — в виде электрических зарядов, магнитных полей и фотонов. Изучается в теории электромагнетизма. Диссипативные силы — силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту. В физике консервативные силы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0. Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии. Мо́щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Различают среднюю мощность за промежуток времени : и мгновенную мощность в данный момент времени: В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

11. Удар. Виды ударов. Абсолютно упругий удар. Пример расчета скоростей для абсолютной упругости и неупругого ударов.

Удар — толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь. Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков. Абсолютно упругий удар может выполняться совершенно точно при столкновениях элементарных частиц низких энергий. Это следствие принципов квантовой механики, запрещающей произвольные изменения энергии системы. Если энергии сталкивающихся частиц недостаточно для возбуждения их внутренних степеней свободы, то механическая энергия системы не меняется. Изменение механической энергии может также быть запрещено какими-то законами сохранения (момента импульса, чётности и т. п.). Надо, однако, учитывать, что при столкновении может изменяться состав системы. Простейший пример — излучение кванта света. Также может происходить распад или слияние частиц, а в определённых условиях — рождение новых частиц. Абсолютно неупругий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело. Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Энергия, конечно же, никуда не исчезает, а переходит в тепловую. Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики. При реальном ударе макроскопических тел происходит деформация соударяющихся тел и распространение по ним упругих волн, передающих взаимодействие от сталкивающихся границ по всему телу. Пусть сталкиваются одинаковые тела. Если c — скорость звука в теле, L — характерный размер каждого тела, то время удара будет порядка . Множитель 2 соответствует распространению волны в прямом и обратном направлении. Соответственно, систему сталкивающихся тел можно считать замкнутой, если импульс внешних сил за время t мал по сравнению с импульсами тел. Кроме того, само время t должно быть достаточно мало, в противном случае становится проблематично оценить потери энергии на деформации за время удара (часть энергии всегда расходуется на внутреннее трение), а само описание сталкивающихся тел становится неполным из-за существенного вклада внутренних степеней свободы. Необходимо, чтобы все деформации при ударе были существенно меньше, чем размеры тел.