Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
0420309_1431B_radioavtomatika_uchebnoe_posobie.doc
Скачиваний:
17
Добавлен:
12.11.2019
Размер:
12.57 Mб
Скачать

Контрольные вопросы

  1. Что такое дискретная функция времени ?

  2. Что является аналогами дифференциалов и интегралов при использовании дискретных функций времени ?

  3. Чем описываются динамические процессы в дискретных системах радиоавтоматики ?

3.3. Дискретное преобразование Лапласа и z - преобразование

Удобным для решения разностных уравнений является операционный метод, основанный на дискретном преобразовании Лапласа, которое представляет собой обобщение обычного преобразования Лапласа на дискретные функции (сигналы).

О бычное прямое преобразование

(3.10)

где x(t) - непрерывная функция - оригинал, Х(р) - изображение.

Как известно, импульсный сигнал на выходе простейшего импульсного элемента можно представить в виде промодулированной последовательности дельта-функций:

(3.11)

Таким образом, каждая ордината дискретной функции представляет собой δ-функцию, площадь которой определяется функцией Х(пТ). Только в этом существует формальное различие между функциями X*(t) и Х(пТ). Но без него невозможно ввести понятия, связанные с изображениями дискретных сигналов.

Изображение сигнала x*{t) в смысле дискретного преобразования Лапласа определяется по формуле:

(3.12)

где X*{t)-оригинал; Х*(р) -изображение.

Как видно из этой формулы, дискретное преобразование устанавливает функциональную связь между дискретными функциями (сигналами) и их изображениями. Нетрудно заметить аналогию между выражениями (10) и (12). Интегралу с бесконечным пределом соответствует бесконечная сумма, непрерывному аргументу t - дискретный аргумент пТ , а непрерывной функции x(t) -дискретная функция х(пТ). По существу выражение (12) есть сумма изображений всех δ - функций, входящих в формулу (11). Под знак суммы необходимо ставить соответствующую дискретную функцию х(пТ).

Очень удобным на практике оказалось Z - преобразование, которое получается из дискретного преобразования Лапласа путем подстановки z=e pT:

(3.13)

где х(пТ) - оригинал; X(z) - изображение в смысле Z- преобразования.

Рассмотрим два примера определения изображений дискретных функций.

1. Требуется определить изображение единичной ступенчатой дискретной функции х(пТ) — 1(пТ).

В соответствии с формулой (11) имеем

Z-преобразование этой функции

2. Дана экспоненциальная функция х(пТ)=eanT . Найдем ее изображение :

В справочной литературе по автоматике содержатся обширные таблицы дискретного преобразования Лапласа и Z - преобразования. В таблице приведены изображения часто встречающихся функций.

Итак, изображения дискретных функций являются функциями еpT, а не р, как это имеет место в обычном преобразовании Лапласа. В связи с этим возникла необходимость перехода к аргументу z = еpT, который является периодической функцией частоты. Поэтому дискретные изображения и частотные спектры дискретных функций также являются периодическими функциями частоты с периодом 2π.

Таблица 3.2

Изображение часто встречающихся функций времени

Контрольные вопросы

  1. Чем отличается дискретное преобразование Лапласа от обычного преобразования Лапласа ?

  2. Как получаются Z-изображения функций времени ?

  3. Что дает разработчику или исследователю автоматических систем использование обычного и дискретного преобразований Лапласа и Z-преобразования ?