Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tema 1 kletka.doc
Скачиваний:
1
Добавлен:
24.11.2019
Размер:
279.04 Кб
Скачать

Глава 2. Клеточное ядро — центр управления жизнедеятельностью клетки

2.1. ЯДРО — НЕЗАМЕНИМЫЙ КОМПОНЕНТ КЛЕТКИ

Еще в конце прошлого века было доказано, что лишенные ядра фрагменты, отрезанные от амебы или инфузории, через более или менее короткое время погибают. Более детальные опыты показали, что энуклеированные амебы живут, но вскоре после операции перестают питаться, двигаться и через несколько дней (до одной недели) погибают. Если пересадить ядро в ранее энуклеированную клетку, то процессы нормальной жизнедеятельности восстанавливаются и через некоторое время амеба начинает делиться. Яйцеклетки морского ежа, лишенные ядра, при стимуляции к партеногенетическому развитию делятся, но тоже в конце концов погибают. Особенно интересные опыты были проведены на крупной одноклеточной водоросли ацетабулярии. После удаления ядра водоросль не только живет, но и в течение определенного периода может восстанавливать безъядерные участки. Следовательно, при отсутствии ядра прежде всего нарушается способность к размножению, и, хотя жизнеспособность на какое-то время сохраняется, в конце концов такая клетка неизбежно погибает. содержание ядерного и лишенного ядра фрагмента в среде с радиоактивным предшественником РНК — 3Н-уридином показало, что синтез РНК в безъядерном фрагменте отсутствует. Белковый же синтез продолжается некоторое время за счет информационных РНК и рибосом, сформированных ранее, до удаления ядра. Пожалуй, наиболее яркую иллюстрацию роли ядра дают безъядерные эритроциты млекопитающих. Это эксперимент, поставленный самой природой. Созревая, эритроциты накапливают гемоглобин, затем выбрасывают ядро и в таком состоянии живут и функционируют в течение 120 дней. Они не способны размножаться и в конце концов погибают. Однако клетки, только что выбросившие ядро, так называемые ретикулоциты, еще продолжают синтез белка, но уже не синтезируют РНК. Следовательно, удаление ядра влечет за собой прекращение поступления в цитоплазму новых РНК, которые синтезируются на молекулах ДНК, локализованных в хромосомах ядра. Однако это не мешает уже существующей в цитоплазме информационной РНК продолжать синтезировать белок, что и наблюдается в ретикулоцитах. Затем, когда РНК распадается, синтез белка прекращается, но эритроцит еще продолжает жить долгое время, выполняя свою функцию, которая не связана с интенсивным расходованием белка. Лишенные ядра яйцеклетки морского ежа продолжают жить и могут делиться благодаря тому, что во время овогенеза запасли значительное количество РНК, которая и продолжает функционировать. Информационная РНК у бактерий функционирует минуты, но в ряде специализированных клеток млекопитающих она сохраняется сутки и больше. Несколько особняком стоят данные, полученные на ацетобулярии. Оказалось, что морфогенез удаленной части определяется ядром, но жизнь кусочка обеспечивается ДНК, которую содержат хлоропласты. На этой ДНК синтезируется информационная РНК, которая, в свою очередь, обеспечивает синтез белка.

2.2. ФУНКЦИОНАЛЬНАЯ СТРУКТУРА ЯДРА

В изучении структурно-биохимической организации ядерного аппарата различных клеток большую роль играют сравнительно-цитологические исследования, в которых применяются как традиционный эволюционно-исторический подход, так и широкие сравнительно-цитологические сопоставления организации ядерного аппарата различных разновидностей клеток. Эволюционно-историческое направление в этих исследованиях имеет особое значение, поскольку ядерный аппарат представляет собой наиболее консервативную клеточную структуру — структуру, ответственную за хранение и передачу генетической информации. Широкое сравнительно-цитологическое изучение ядерного аппарата у тех клеток, которые как бы резко уклоняются от обычного (типичного) уровня организации (ооциты, сперматозоиды, ядерные эритроциты, инфузории и т. д.), и использование данных, полученных с помощью молекулярно-биологических и цитологических методов в специальных науках, занимающихся клеточным уровнем организации (частная цитология, протозоология и т. д.), позволили выявить массу интересных особенностей организации ядерного аппарата, имеющих общецитологическое значение. В составе ядерного аппарата эукариотных клеток можно выделить ряд субсистем, центральное место среди которых занимает совокупность интерфазных хромосом, или ДНК ядра. В них сосредоточена вся ДНК ядра, находящаяся в весьма сложных взаимоотношениях с белками хроматина, которые, в свою очередь, подразделяются на структурные, функциональные и регуляторные белки. Второй и весьма важной субсистемой ядерного аппарата является ядерный матрикс, представляющий собой систему фибриллярных белков, выполняющих как структурную (скелетную) функцию в топографической организации всех ядерных компонентов, так и регуляторную функцию в организации процессов репликации, транскрипции, в созревании (процессинге) и перемещении продуктов транскрипции внутри ядра и за его пределы. По-видимому, белковый матрикс имеет двоякую природу: какие-то одни его компоненты обеспечивают в основном скелетную функцию, другие — регуляторную и транспортную. Вместе с определенными участками ДНК хроматина белки ядерного матрикса (функционального и структурного) образуют основу ядрышка. Белки структурного матрикса принимают участие и в формировании поверхностного аппарата ядра. Поверхностный аппарат ядра занимает и в структурном, и в функциональном отношениях промежуточное положение между метаболическим аппаратом цитоплазмы и ядром. Мембраны и цистерны ядерной оболочки являются по сути дела специализированной частью общей мембранной системы цитоплазмы. Специфическими структурами поверхностного аппарата ядра, играющими важную роль в реализации его основной функции — обеспечении взаимодействия ядра и цитоплазмы выступают поровые комплексы и субмембранная плотная пластинка, которые образуются с помощью белков ядерного матрикса. Наконец, последней субсистемой ядерного аппарата является кариоплазма. Это аналогичная гиалоплазме внешне бесструктурная фаза ядерного аппарата, которая создает специфическое для ядерных структур микроокружение, что обеспечивает возможность их нормального функционирования. Кариоплазма находится в постоянном взаимодействии с гиалоплазмой через систему поровых комплексов и мембран ядерной оболочки.

2.3. РОЛЬ ЯДЕРНЫХ СТРУКТУР В ЖИЗНЕДЕЯТЕЛЬНОСТИ КЛЕТКИ

Основные процессы, связанные с синтезом белка, в принципе одинаковы у всех форм живого, указывают на особое значение клеточного ядра. Ядро осуществляет две группы общих функций: одну, направленную на собственно хранение генетической информации, другую — на ее реализацию, на обеспечение синтеза белка. Иными словами, первую группу составляют процессы поддержания наследственной информации в виде неизменной структуры ДНК. Эти процессы обусловлены наличием так называемых репарационных ферментов, ликвидирующих спонтанные повреждения молекул ДНК (разрыв одной из цепей ДНК, часть радиационных повреждений), что сохраняет строение молекул ДНК практически неизменными в ряду поколений клеток или организмов. Далее в ядре происходит воспроизведение, или редупликация, молекул ДНК, что дает возможность двум клеткам получить совершенно одинаковые и в качественном, и в количественном смысле объемы генетической информации. В ядрах происходят процессы изменения и рекомбинации генетического материала, что наблюдается во время мейоза (кроссинговер). Наконец, ядра непосредственно участвуют в процессах распределения молекул ДНК при делении клеток. Другой группой клеточных процессов, обеспечивающихся активностью ядра, является создание собственно аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но транскрипция всех видов трансферных РНК и рибосомных РНК. В ядре эукариотов происходит также образование субъединиц рибосом путем комплексирования синтезированных в ядрышке рибосомных РНК с рибосомными белками, которые синтезируются в цитоплазме и переносятся в ядро. Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение или нарушение любой из перечисленных выше функций гибельно для клетки в целом. Так, нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически — к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не сможет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что тоже гибельно для них. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случаях нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям. Все это указывает на ведущее значение ядерных структур в процессах, связанных с синтезом нуклеиновых кислот и белков, главных функционеров в жизнедеятельности клетки. Ядро осуществляет сложную координацию и регуляцию процессов синтеза РНК. Как указывалось, все три типа РНК образуются на ДНК. Радиографическими методами показано, что синтез РНК начинается в ядре (хроматине и ядрышке), и уже синтезированная РНК перемещается в цитоплазму. Таким образом мы видим, что ядро программирует синтез белка, который осуществляется в цитоплазме. Однако само ядро также испытывает влияние цитоплазмы, т. к. синтезируемые в ней ферменты поступают в ядро и необходимы для его нормального функционирования. Например, в цитоплазме синтезируется ДНК-полимераза, без которой не может происходить авторепродукция молекул ДНК. Поэтому следует говорить о взаимном влиянии ядра и цитоплазмы, при котором главенствующая роль все же принадлежит ядру как хранителю наследственной информации, которая передается при делении от одной клетки к другой.

2.4. ВЕДУЩЕЕ ЗНАЧЕНИЕ ДНК

Основное биологическое значение ядерного аппарата определяется его главным компонентом — гигантскими молекулами ДНК, способными к репликации и транскрипции. Эти два свойства ДНК и лежат в основе двух важнейших функций ядерного аппарата любой клетки:

а) удвоения наследственной информации и передачи ее в ряду клеточных поколений; б) регулируемой транскрипции участков молекул ДНК и транспорта синтезируемых РНК в цитоплазму клеток.

По характеру организации ядерного аппарата все клетки делятся на три группы: прокариотные, мезокариотные и эукариотные. Клеткам прокариот свойственны отсутствие ядерной оболочки, укладка ДНК без участия гистонов, унирепликонный тип репликации ДНК, моноцистронный принцип организации транскрипции и ее регуляция преимущественно по принципу положительной и отрицательной обратной связи. Клетки эукариот, напротив, отличаются наличием ядерной оболочки, точнее говоря, даже сложного поверхностного аппарата ядра и мультирепликонным типом репликации молекул ДНК, образующих набор хромосом. Упаковка этих молекул происходит с помощью комплекса белков. Характер упаковки подвергается циклическим изменениям, связанным с прохождением клетками закономерных фаз цикла репродукции. Процессы транскрипции ДНК и ее регуляции у эукариот значительно отличаются от таковых у прокариот. Мезокариотные клетки по организации ядерного аппарата занимают как бы промежуточное положение между эукариотными и прокариотными клетками. У мезокариот, как и у эукариот, имеется хорошо развитый поверхностный аппарат ядра. Укладка в хромосомы молекул ДНК существенно отличается от организации ДНП в эукариотных клетках. Механизмы репликации и транскрипции ДНК у мезокариот выяснены слабо. Таким образом в клеточном ядре протекают важнейшие процессы, связанные с наследственным статусом организма, — peпликация (биосинтез ДНК) и транскрипция. Кроме того, ядро является источником отдельных белков и ферментов, необходимых для жизнедеятельности дифференцированных тканей. Одновременно с потоком информации в клетку для обеспечения синтеза белков осуществляется обратная связь: цитоплазма — ядро, т. е. ядро функционирует в тесном взаимодействии с другими частями клетки, объединяя процессы ядерно-цитоплазматического транспорта и регуляторного взаимодействия с цитоплазмой клетки.

Функциональная связь органоидов клетки

Особенности морфологии растительных клеток

Растительная клетка имеет более или менее жесткую клеточную оболочку (стенку). Клеточная оболочка построена из целлюлозы - полисахарида, молекулы которого образуют тончайшие нити, погруженные в аморфное вещество, состоящее из пектиновых соединений. В зависимости от расположения этих нитей клетка обладает способностью либо растягиваться в длину (если они расположены кольцом), либо в ширину (при продольном расположении нитей). В образовании клеточной оболочки непосредственное участие принимает цитоплазма: она продуцирует слагающие клеточную оболочку вещества, которые откладываются снаружи от нее. Однако не все растительные клетки имеют такую оболочку. Ее лишены зооспоры и гаметы водорослей, мужские гаметы высших растений. При всей своей прочности клеточная оболочка должна быть проницаема для большого количества веществ, участвующих в обменных процессах как между соседними клетками, так и между клеткой и окружающей средой. Связь между соседними клетками осуществляется через поры, представляющие собой неутолщенные участки оболочки. Через них проходят тонкие тяжи цитоплазмы, называемые плазмодес-мами и связывающие соседние клетки и ткани в единое целое. Для растительных клеток характерны специфические органоиды - пластиды. Они окружены двойной мембраной и содержат систему мембранных пузырьков - тила-коидов и более или менее гомогенное вещество - строму.  их разделяют на несколько групп. Хлоропласты - это пластиды, в которых протекает фд] тосинтез. Они содержат хлорофилл и каротиноиды. Тил*. коиды хлоропластов собраны в стопки (граны) наподобие столбиков монет. Молекулы хлорофилла и каротинопд08 встроены в мембраны тилакоидов. В хлоропластах чисто можно обнаружить крахмальные зерна и мелкие липидньа (жировые) капли. Это временные хранилища запасных пЛ тательных веществ. Подобно митохондриям, хлоропл, -ГЬ1 имеют собственную ДНК и свой белоксинтезирующип ац. парат (см. гл. 2 § 4). Из пигментированных пластид в растительных клеткаж следует упомянуть хромопласты. Они многообразны щ форме, не содержат хлорофилла, а синтезируют и накапливают каротиноиды - желтые, оранжевые и красные пигменты, от которых зависит окраска цветков, плодов, корнЛ и осенних листьев. Хромопласты могут развиваться из зеленых хлоропластов, в которых разрушается хлорофилл и внутренние мембранные структуры и происходит накопление каротиноидов. Примером могут служить созревающие фрукты. Точная функция хромопластов неизвестна, но есть данные о том,что они привлекают насекомых-опылителей. В растительных клетках есть и бесцветные пластиды -1 лейкопласты. Некоторые из них (амилопласты) синтезируют крахмал, в некоторых могут образовываться и накапливаться липиды и белки. В присутствии света лейкопласты могут превращаться в хлоропласты. Пластиды сравнительно легко переходят из одного типа в другой. Размножаются они делением надвое, причем время их деления соответствует времени деления клетки, в которой они находятся. Предшественниками зрелых дифференцированных пла<Н тид являются пропластиды - мелкие бесцветные или бледно-зеленые недифференцированные компоненты растительной клетки, которые сосредоточены в меристеме или образовательной ткани, корней и побегов. Пропластиды, содержащие про* ламмелярные тельца, на свету превращаются в хлоропласты.] Например, в зародышах семян имеются пропластиды - ламеЛ* лярные тельца, сформировавшиеся в темноте, из которых при развитии зародыша на свету образуются хлоропласты. Специфическими для растительной клетки компонентам* «нляются также одна или несколько центральных вакуо-я - тонопласт. Это крупные, ограниченные мембраной ^зырьки, заполненные клеточным соком. Основным ком-"онентом клеточного сока является вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Обычное содержимое вакуоли - соли и сахара, иногда - растворимые белки. При высоком содержании'некоторых веществ в вакуолях могут образовываться кристаллы,в частности, оксалат кальция, имеющие разнообразную форму. Обычно содержимое вакуолей имеет слабокислую реакцию, реже - очень кислую, как, например, у плодов лимона. В вакуолях могут накапливаться метаболиты (продукты обмена веществ), например, запасные белки в семенах, а также ядовитые вторичные продукты метаболизма (алкалоид никотин). Часто в вакуолях откладываются пигменты - антоцианы, определяющие красную и голубую окраску овощей (редис), фруктов (вишня, слива), цветков (василек, герань, роза, пион). Иногда эти пигменты маскируют в листьях хлорофилл (декоративный красный клен). Именно антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла и по мере его разрушения антоцианы проявляют свою окраску. Поэтому наиболее ярко окрашены листья холодной ясной осенью. Вакуоли участвуют также в разрушении некоторых органелл клетки (рибосом, митохондрий, пластид), которые попадают в вакуоли. Вакуоли формируются из эндоплазматического ретикулума. В живой растительной клетке основное вещество находится в постоянном движении, в которое вовлекаются органеллы и другие включения. Называется оно током цитоплазмы или циклозом и прекращается только в мертвых клетках. Циклоз облегчает передвижение веществ в цитоплазме и обмен ими между клеткой и окружающей средой. Плазматическая мембрана регулирует поступление веществ в клетку и выход их из нее. При росте клетки увеличивается и толщина, и площадь клеточной оболочки. Растяжение оболочки - сложный прочесе, находящийся под строгим биохимическим контролем протопласта, и регулируется гормоном ауксином. Вновь разовавшиеся нити целлюлозы располагаются преимущественно поверх старых, но часть из них может включаться уже существующую структуру. В клетках, растущих во всех направлениях равномерно (например, сердцевинные клетки стебля, клетки запасающих тканей), отложение ни. тей носит случайный характер, и они образуют неправиль., ную сеть. В удлиняющихся клетках нити ориентированы под прямым углом к оси удлинения. Деление клетки начинается после достижения ею опре-деленного размера. Две дочерние клетки, каждая из кото, рых примерно вполовину меньше исходной материнской, снова начинают расти. Одноклеточные растения (некоторые водоросли) могут делиться каждые несколько часов, образуя непрерывный ряд идентичных организмов. У многоклеточных растений деление клеток наряду с увеличением их размеров является еще и способом роста организма. Но в любом случае новые клетки, образовавшиеся путем деления, сходны по структуре и функциям как с родительской клеткой, так и между собой.

Возникновение клеточной организации в процессе эволюции. Теории происхождения эукариотических клеток

Ископаемые останки клеток эукариотического типа обнаружены в породах, возраст которых не превышает 1,0—1,4 млрд. лет. Более позднее возникновение, а также сходство в общих чертах их основных биохимических процессов (самоудвоение ДНК, синтез белка на рибосомах) заставляют думать о том, что эукариотические клетки произошли от предка, имевшего прокариотическое строение.

Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукариотических клеток, согласно которой (рис. 1.4) основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот, способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрии, которые произошли путем изменений симбионтов — аэробных бактерий, проникших в клетку-хозяина и сосуществовавших с ней.

Сходное происхождение предполагают для жгутиков, предками которых служили симбионты-бактерии, имевшие жгутик и напоминавшие современных спирохет. Приобретение клеткой жгутиков имело наряду с освоением активного способа движения важное следствие общего порядка. Предполагают, что базальные тельца, которыми снабжены жгутики, могли эволюционировать в центриоли в процессе возникновения механизма митоза.

Способность зеленых растений к фотосинтезу обусловлена присутствием в их клетках хлоропластов. Сторонники симбиотической гипотезы считают, что симбионтами клетки-хозяина, давшими начало хлоропластам, послужили прокариотические синезеленые водоросли.

Серьезным доводом в пользу симбиотического происхождения митохондрий, центриолей и хлоропластов является то, что перечисленные органеллы имеют собственную ДНК. Вместе с тем белки бациллин и тубулин, из которых состоят жгутики и реснички соответственно современных прокариот и эукариот, имеют различное строение. У бактерий не найдено также структур со свойственной жгутикам, ресничкам, базальным тельцам и центриолям эукариотических клеток комбинацией микротрубочек: «9 + 2» или «9 + 0».

Внутриклеточные мембраны гладкой и шероховатой цитоплазматической сети, пластинчатого комплекса, пузырьков и вакуолей рассматривают как производные наружной мембраны ядерной оболочки, которая способна образовывать впячивания.

Центральным и трудным для ответа является вопрос о происхождении ядра. Предполагают, что оно также могло образоваться из симбионта-прокариота. Увеличение количества ядерной ДНК, во много раз превышающее в современной эукариотической клетке ее количество в митохондрий или хлоропласте, происходило, по-видимому, постепенно путем перемещения групп генов из геномов симбионтов. Нельзя исключить, однако, что ядерный геном формировался путем наращивания генома клетки-хозяина (без участия симбионтов).

Согласно инвагинационной гипотезе, предковой формой эукариотической клетки был аэробный прокариот (рис. 1.4). Внутри такой клетки-хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путем впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрий, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.

Инвагинационная гипотеза хорошо объясняет наличие в оболочках ядра, митохондрий, хлоропластов, двух мембран. Однако она не может ответить на вопрос, почему биосинтез белка в хлоропластах и митохондриях в деталях соответствует таковому в современных прокариотических клетках, но отличается от биосинтеза белка в цитоплазме эукариотической клетки.

История показала, что эволюционные возможности клеток эукариотического типа несравнимо выше, чем прокариотического. Ведущая роль здесь принадлежит ядерному геному эукариот, который во много раз превосходит по размерам геном прокариот. Количество генов у бактерии и в клетке человека, например, соотносится как 1: (100-1000). Важные отличия заключаются в диплоидности эукариотических клеток благодаря наличию в ядрах двух комплектов генов, а также в многократном повторении некоторых генов. Это расширяет масштабы мутационной изменчивости без угрозы резкого снижения жизнеспособности, эволюционно значимым следствием чего является образование резерва наследственной изменчивости.

При переходе к эукариотическому типу усложняется механизм регуляции жизнедеятельности клетки, что на уровне генетического материала проявилось в увеличении относительного количества регуляторных генов, замене кольцевых «голых» молекул ДНК прокариот хромосомами, в которых ДНК соединена с белками. В итоге стало возможным считывать биологическую информацию по частям с разных групп генов в разном их сочетании в различных типах клеток и в разное время. В бактериальной клетке, напротив, одновременно считывается до 80—100% информации генома. В клетках взрослого человека в разных его органах транскрибируется от 8—10% (печень, почка) до 44% (головной мозг) информации. Использованию биологической информации частями принадлежит исключительная роль в эволюции многоклеточных организмов, так как именно это позволяет разным группам клеток специализироваться по различным функциональным направлениям.

Большое значение при переходе к многоклеточности имело наличие у эукариотических клеток эластичной оболочки, что необходимо для образования устойчивых клеточных комплексов.

Среди цитофизиологических особенностей эукариот, увеличивающих их эволюционные возможности, необходимо назвать аэробное дыхание,которое также послужило предпосылкой для развития многоклеточных форм. Интересно, что сами эукариотические клетки появились на Земле после того, как концентрация O2 в атмосфере достигла 1% (точка Пастера). Названная концентрация является необходимым условиемаэробного дыхания.

В условиях усложнения генетического аппарата эукариот, увеличения суммарного количества ДНК и распределения ее по хромосомам трудно переоценить значение возникновения в эволюции митоза как механизма воспроизведения в поколениях генетически сходных клеток.

Появление вследствие эволюционных преобразований митоза такого способа деления клеток, как мейоз, дающего возможность сохранить постоянство хромосом в ряду поколений, наилучшим образом решило проблему размножения многоклеточных организмов. Связанный с мейозом переход к половому размножению усилил эволюционную роль комбинативной изменчивости, способствовал увеличению скорости эволюции.

Благодаря отмеченным особенностям за 1 млрд. лет эволюции эукариотический тип клеточной организации дал широкое разнообразие живых форм от одноклеточных простейших до млекопитающих и человека.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]