Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биполярные транзисторы.doc
Скачиваний:
233
Добавлен:
02.05.2014
Размер:
373.25 Кб
Скачать

3.4. Нелинейные модели биполярного транзистора Передаточная модель Эберса-Молла

Модель базируется на эквивалентной схеме, приведенной на рис. 3.14. Расчетные формулы, полученные ранее, (см. 3.8, 3.9, 3.17, 3.18) объединим в систему

:       (3.19)

причем uЭП= - uЭБ , uКП = - uКБ.

Токи во внешних цепях транзистора рассчитываются по формулам:

(3.20)

В простейшем случае в модели используются три параметра:

  • I0 -тепловой ток транзистора;

  •  - прямой коэффициент передачи тока базы;

  • I - обратный коэффициент передачи тока базы.

Передаточная модель Эберса - Молла может уточняться (влияние объемных сопротивлений, генерационно-рекомбинационных токов переходов, эффект Эрли и т. д.) и поэтому именно она используется в компьютерных программах.

Классическая модель Эберса - Молла

 

Классическая модель Эберса - Молла базируется на эквивалентной схеме, изображенной на рис. 3.15. От передаточной модели классическая отличается тем, что составляющие токов транзистора сгруппированы иначе. Переходы транзистора представлены изолированными диодами, токи которых i 1 и i 2 определяются напряжениями u эп и u кп соответственно: , (3.21)

где и. (3.22)

Тепловые токи IЭБК и IКБК имеют следующий смысл:

  • IЭБК - это тепловой ток эмиттера в схеме с общей базой при uКП = 0 ( замыкании выводов коллектора и базы).

  • IКБК - тепловой ток коллектора в схеме с ОБ при uЭП=0.

Формально тепловые токи соответствуют токам переходов при обратных напряжениях, много больших u т. Однако реально измеряемые обратные токи переходов транзистора окажутся гораздо больше за счет токов генерации в переходах и токов утечки. (Аналогичная ситуация рассматривалась при анализе p-n-перехода). Поэтому определить значения тепловых токов транзистора можно только по результатам измерений при прямых напряжениях на переходах. Взаимодействие переходов отражено путем введения в эквивалентную схему генераторов тока i1 и  I i2 .

Соответственно токи в цепях каждого электрода можно рассчитать по формулам: . (3.23)

Классическая модель менее удобна для расчетов, чем передаточная, но широко используется для объяснения работы транзистора.

Модели для активного режима работы транзистора

Рассмотренные выше нелинейные модели транзистора справедливы для любого режима работы. Однако, для наиболее важного активного режима они могут быть существенно упрощены:   Во-первых, можно исключить элементы, описывающие инверсную составляющую тока связи (генератор  I i2).   Во-вторых, в качестве одного из аргументов целесообразно рассматривать входной ток транзистора (ток эмиттера в схеме с ОБ и ток базы в схеме ОЭ), так как сопротивление открытого эмиттерного перехода мало, и внешняя цепь по отношению к транзистору в большинстве случаев может рассматриваться как генератор входного тока.

 Рассмотрим транзистор в схеме с ОБ, работающий в активном режиме (рис.3.16). Если разорвать цепь эмиттера, то под действием обратного напряжения на коллекторе через коллекторный переход из коллектора в базу будет протекать обратный токIКБ0. Его величина приводится в справочных данных транзистора. Подчеркнем, что ток IКБ0 следует именно измерять, так как аналитически оценить все составляющие обратного тока невозможно (если использовать формулу, связывающую IКБ0 и IКБК, получаемую из уравнений Эберса - Молла, то получится очень большая ошибка).

Таким образом, при iЭ =0 , iК= IКБ0.

Если теперь замкнуть цепь эмиттера, то появится ток iЭ=EЭ/RЭ (задаваемый внешней цепью). Ток эмиттера будет передаваться в коллектор с коэффициентом  .

В результате получим: iК = iЭ+IКБ0 . (3.24)

Напряжение на эмиттерном переходе можно вычислить с помощью (3.21). Пренебрегая малыми тепловыми токами, получаем:

. (3.25)

Эквивалентная схема транзистора для активного режима приведена на рис. 3.17. В схему добавлено сопротивление тела базыr Б. Отметим, что в практических расчетах прямое напряжение uЭП часто считают не зависящим от тока эмиттера (при изменении тока эмиттера в 10 раз напряжение на эмиттерном переходе изменяется на 60 мВ) и принимают uЭП U*, где U* - пороговое напряжение перехода. Для кремниевых транзисторов U* 0,6-0,8 В. Током IКБ0 для кремниевых транзистором пренебрегают.

Для включения с ОЭ (рис.3.18) в качестве входного тока рассматривается ток базы. Учитывая что iЭ= iК+iБ, исключим ток iЭ из выражения (3.24) iК = ( iК+iБ)+IКБО , тогда . (3.26)

IКЭ0 КБ0 - называется сквозным тепловым током транзистора. Это ток между эмиттером и коллектором при оборванном выводе базы. Для вычисления напряжения на эмиттерном переходе используем (3.25). Считая, что iБ (1- iЭ), получим:

. (3.27)

Эквивалентная схема для включения с ОЭ приведена на рис.3.19.