Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аналитическая химия (Семинары по аналитической и коллоидной химии).doc
Скачиваний:
122
Добавлен:
20.05.2014
Размер:
412.16 Кб
Скачать

2.2. Атомная спектроскопия

Методы атомной спектроскопии позволяют определить элементный состав исследуемой пробы (набор присутствующих атомов) по спектрам поглощения или испускания света возбужденными атомами в оптическом и рентгеновском диапазоне. Атомные спектры наблюдаются в виде ярких цветных линий и возникают в результате переходов электронов с одного энергетического уровня на другие (рис.2.1); число уровней в отдельных атомах невелико и поэтому эти спектры дискретные, то-есть состоят из узких отдельных линий. Простейший атомный спектр наблюдается у атома водорода, он имеет наборы линий, называемые сериями: серия Лаймана в УФ-диапазоне, серия Бальмера в видимом диапазоне, серии Пашена, Брэкета, Пфунда и Хэмфри в ИК-диапазоне. Частоты линий спектра водорода можно рассчитать по разностям энергий соответствующих энергетических уровней. У других элементов может быть большее число спектральных линий, но они также узкие; каждый элемент характеризуется собственным набором линий.

Если анализируемая проба содержит ряд элементов, частоты всех линий можно измерить и сравнить с помощью ЭВМ со спектрами отдельных элементов, приводимых в справочниках. Таким образом осуществляется качественный анализ, а количественный основан на измерении интенсивности линий, которая прпопорциональна количеству находящегося в пробе элемента.

Поскольку энергетические уровни валентных электронов свободных атомов и атомов, входящих в состав молекул, заметно различаются, для получения атомных спектров необходима предварительная атомизация (деструкция) пробы, то-есть перевод ее в газообразное атомарное состояние.

2.2.1. Атомно-эмиссионный спектральный анализ

Пробу исследуемого вещества нагревают плазмой, электрической дугой или разрядом, в результате чего молекулы диссоциируют на атомы, которые частично переходят в возбужденное состояние, время жизни которого порядка 10-7-10-8 с, затем самопроизвольно возвращаются в нормальное состояние, испуская кванты света, дающие дискретный спектр испускания (эмиссии). Измерение частот испускаемых линий в спектре испускания и сравнение со спектрами отдельных элементов справочников позволяет определить, какие элементы содержатся в исследуемом образце. Количественный анализ основан на измерении интенсивностей отдельных линий спектра, так как интенсивность излучения растет с увеличением концентрации элемента. Необходима предварительная калибровка. Метод очень чувствителен.

Основные части атомного спектрографа изображены на блок-схеме

Источник возбуждения

Дисперсионный элемент

Рецептор

Источником возбуждения может быть электрическая искра, дуга, аргоновая плазма или пламя. Температура электрической дуги 3000-7000О С, искры - 6000-12000ОС, плазмы - 6000-10000ОС. Температура пламени ниже - от 1500 до 3000ОС, поэтому в пламени атомизируются соединения не всех, а только некоторых элементов (щелочных, и др.). Дисперсионный элемент, разлагающий излучение в спектр - призма или дифракционная решетка. В качестве рецептора используется фотопластинка или фотоэлемент.

Этим методом можно определить более 80 элементов; чувствительность изменяется от 0,01% ( Hg, U) до 10-5% (Na, B, Bi).