Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Философия науки - Л.А Микешина

.pdf
Скачиваний:
600
Добавлен:
24.05.2014
Размер:
11.29 Mб
Скачать

342 of 513

вводимые науками, изучающими сложность мира, могут служить гораздо более полезными метафорами, чем традиционные представления ньютоновской физики.

Науки, изучающие сложность мира, ведут поэтому к появлению метафоры, которая может быть применена к обществу: событие представляет собой возникновение новой социальной структуры после прохождения бифуркации; флуктуации являются следствием индивидуальных действий.

Событие имеет «микроструктуру». Рассмотрим пример из истории — революцию 1917 года в России. Конец царского режима мог принять различные формы. Ветвь, по которой пошло развитие, была результатом действия множества факторов, таких, как отсутствие дальновидности у царя, непопулярность его жены, слабость Керенского, насилие Ленина. Имен-

655

но эта микроструктура, эта «флуктуация» обусловили в итоге разрастание кризиса и все последующие события.

С этой точки зрения история является последовательностью бифуркаций. Поразительным примером этого является переход от эры палеолита к эре неолита, который произошел практически в одно и то же время по всему земному шару (этот факт становится еще более удивительным, если принять во внимание историческую длительность периода палеолита). Этот переход, по-видимому, являлся бифуркацией, связанной с более систематическим освоением растительных и минеральных ресурсов. Много ветвей возникло из этой бифуркации: например, китайский неолитический период с его космическим видением, египетский неолит с его верой в богов или же пораженный тревогами неолитический период в развитии доколумбовых цивилизаций. Всякая бифуркация влечет за собой и позитивные сдвиги, и определенные жертвы. Переход к эре неолита привел к возникновению иерархических обществ. Разделение труда означало неравенство. Возникло рабство, которое продолжало существовать вплоть до девятнадцатого века. В то время как фараон воздвигал пирамиду в качестве своего надгробного памятника, его народ захоранивался в общих могилах.

Девятнадцатый век, так же как и двадцатый, продемонстрировал целую серию бифуркаций. Всякий раз, когда открывались новые материалы — уголь, нефть, электричество или новые формы используемой энергии, — видоизменялось и общество. Разве нельзя сказать, что эти бифуркации, взятые в целом, привели к большему участию населения в культуре и что именно благодаря им стало уменьшаться неравенство между социальными классами, которое возникло в эпоху неолита?

Вообще говоря, бифуркации являются одновременно показателем нестабильности и показателем жизненности какого-либо рассматриваемого общества. Они выражают также стремление к более справедливому обществу. Даже за пределами социальных наук Запад являет нам удивительный спектакль последовательных бифуркаций. Музыка и искусство меняются, можно сказать, каждые пятьдесят лет. Человек постоянно испытывает новые возможности, строит утопии, которые могут привести к более гармоничным отношениям человека с человеком и человека с природой. И эти темы поднимаются вновь и вновь в сегодняшних опросах мнений, касающихся характера развития в двадцать первом веке.

Куда же мы попали? Я убежден, что мы приближаемся к точке бифуркации, которая связана с прогрессом в развитии информационных технологий и всем тем, что к ним относится, как то: средства массовой информации, робототехника и искусственный интеллект. Это — «общество с сетевой структурой» (networked society) с его мечтами о глобальной деревне.

Но каким будет результат этой бифуркации? На какой ее ветви нам предстоит обнаружить самих себя? Каким будет результат глобализации?

Слово «глобализация» охватывает множество самых разных значений. Римские императоры, возможно, уже мечтали о «глобализации» — об одной единой культуре, которая господствовала бы в мире. Сохранение плюрализма культур и уважения к другим культурам потребует внимания будущих поколений. Но на этом пути существуют также и опасности.

656

В настоящее время известно около 12 тысяч видов муравьев. Колонии муравьев насчитывают от нескольких сотен до нескольких миллионов особей. Любопытно, что поведение муравьев зависит от размера колонии. В малой колонии муравей ведет себя как индивидуалист, он разыскивает пищу и приносит ее в муравейник. Но если колония большая, ситуация разительно меняется. В таком случае спонтанно возникают структуры коллективного поведения как результат автокаталитических реакций между муравьями, обменивающимися информацией посредством химических сигналов. Поэтому не случайно, что в больших колониях муравьев или термитов отдельные насекомые становятся слепыми. В результате роста популяции инициатива переходит от отдельной особи к коллективу.

Аналогично, мы можем задаться вопросом о том, каково влияние информационного общества на индивидуальную креативность. Существуют очевидные преимущества такого типа общества, они связаны с развитием медицины и экономическим устройством. Но есть информация и дезинформация; как провести различие между ними? Разумеется, это требует гораздо больше знаний и развитого критического чувства. Истинное надо отличать от ложного, возможное — от невозможного. Развитие информационного общества означает, что мы ставим трудную задачу перед будущими поколениями. Нельзя допустить, чтобы развитие «общества с сетевой структурой», базирующегося на информационных технологиях, привело к появлению новых разногласий и противоречий. Надо искать решение и более фундаментальных проблем. Нельзя ли,

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

342

343 of 513

вообще говоря, ожидать бифуркации, которая уменьшит разрыв между богатыми и бедными нациями? Будут ли для глобализации характерны мир и демократия или же, напротив, явное или замаскированное насилие? Именно от будущих поколений зависит инициирование флуктуаций, которые придадут такое направление течению событий, которое соответствует наступлению эпохи информационного общества.

Мое послание будущим поколениям состоит, стало быть, в том, что кость еще не брошена, что ветвь, по которой пойдет развитие после бифуркации, еще не выбрана. Мы живем в эпоху флуктуаций, когда индивидуальное действие остается существенным.

Чем дальше продвигается наука, тем больше сюрпризов она нам преподносит. Мы перешли от геоцентрического представления о строении Солнечной системы к гелиоцентрическому, и на этой основе были развиты представления о галактиках и, наконец, о множественных вселенных. Каждый из нас слышал о «большом взрыве». Наука не занимается изучением уникальных событий, и это обстоятельство привело к развитию идеи о существовании множественных вселенных. Вместе с тем человек до сих пор является единственным живым существом, которое осознает удивительный мир, который создал его самого и который он, в свою очередь, способен изменять. Условием самого существования человека является примирение с этой двойственностью мира. Я надеюсь, что будущие поколения также найдут компромисс с этим удивительным миром и с его двойственностью. Каждый год наши химики создают тысячи новых веществ, многие из которых будут обнаружены в природных продуктах: это пример реали-

657

зации творческих способностей в рамках творчества природы в целом. Эти удивительные факты убеждают нас в том, что мы должны внимательно относиться и к другим новшествам.

Никто не обладает абсолютной истиной, насколько вообще такое утверждение имеет смысл. Я полагаю, что Ричард Тарнс прав: «Самая глубокая страсть Западной души состоит в том, чтобы переоткрыть ее единство с корнями ее существования». Это страстное желание привело к прометеевскому утверждению силы разума, хотя разум может вести и к отчуждению, к отрицанию всего того, что придает жизни ценность и смысл. Дело будущих поколений — создать новую связь, которая воплотит как человеческие ценности, так и науку, нечто такое, что покончит с пророчествами о «конце Науки», «конце Истории» или даже о наступлении эры «Пост-Человечества». Мы находимся только в начале развития науки, и мы далеки от того времени, когда считалось, что вся Вселенная может быть описана посредством нескольких фундаментальных законов. Мы сталкиваемся со сложным и необратимым в области микроскопического (в частности, при изучении элементарных частиц), в макроскопической области, которая нас окружает, и в области астрофизики. Задача, стоящая перед будущими поколениями, состоит в том, чтобы создать новую науку, которая объединит все эти аспекты, ибо наука до сих пор находится в состоянии младенчества. Подобным образом конец истории был бы прекращением бифуркаций и осуществлением кошмарного предвидения Оруэлла или Хаксли об атемпоральном обществе, которое потеряло свою память. Будущие поколения должны быть бдительными, чтобы гарантировать, что это никогда не случится. Один признак надежды — это то, что интерес к изучению природы и желание участвовать в культурной жизни никогда не были так велики, как сегодня. Мы не нуждаемся ни в каком «пост-человечестве». Человек, каким он является сегодня, со всеми его проблемами, радостями и печалями, в состоянии понять это и сохранить себя в следующих поколениях. Задача в том, чтобы найти узкий путь между глобализацией и сохранением культурного плюрализма, между насилием и политическими методами решения проблем, между культурой войны и культурой разума. Это ложится на нас как тяжелое бремя ответственности.

Письмо к будущим поколениям приходится писать с позиции неопределенности, со всегда рискованной экстраполяцией от прошлого. Однако я остаюсь оптимистом. Роль британских пилотов была решающей и определила исход Второй мировой войны. Это была «флуктуация», если повторить слово, которое я часто использовал в этом тексте. Я верю в возникновение таких необходимых флуктуаций, посредством которых те опасности, которые мы ощущаем сегодня, могли бы быть успешно преодолены. На этой оптимистичной ноте я хочу закончить мое послание.

ДЖЕРАЛЬД ХОЛТОН. (Род. 1922)

Дж. Холтон (Holton) — американский ученый, специалист в области физики и истории науки, почетный профессор Гарвардского университета. Разработал оригинальный способ рассмотрения научной действительности, названный им тематическим анализом науки. Стремясь выяснить, как в существующей научной «данности» происходит прорыв на качественно иной уровень познания, он уделял особое внимание изучению индивидуальной познавательной деятельности, в результате которой и осуществляются такие изменения.

Именно это позволило Холтону заявить об априорной ограниченности любого анализа, замкнутого в «корпоративных» пределах. Он указал на необходимость введения более высокого уровня абстракции, учитывающего не только непосредственную научную «повседневность», но и все те факторы, которые никак не укладываются в пределах поступательного, линейно интерпретированного развития научного знания. Такую «гиперабстракцию» Холтон называет «темой» науки. Кроме результата опытного исследования логически конструированного знания каждая тема включает в себя и некую сверхзадачу, определяющую общее направление исследовательской деятельности. Отсюда следует необходимость

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

343

344 of 513

введения нового метода в рассмотрении научного знания — тематического анализа науки, учитывающего не только оговоренные рамки, но и все так или иначе относящееся к формированию научного знания.

Как полагает Холтон, всех тем, определяющих общее направление развития науки, немного. Появление новой темы — целое событие. Однако предельная степень абстракции заставляет историка науки, прибегающего к тематическому (или, как пишет сейчас Холтон, генетическому) анализу, заниматься скрупулезным просеиванием, детальным рассмотрением (case study) всей информации, относящейся к исследуемой области. Таким образом, Холтон декларирует неизбежность трансдисциплинарного, многоуровнего подхода в исследовании научного знания. Только при таком подходе и возможно построение «объемной» картины развития науки.

А..Д. Боев

Текст печатается по изданию: Холтон Дж. Тематический анализ науки. М., 1981.

659

[К сущности тематического анализа в философии науки]

Во-первых, я пытаюсь произвести тщательный анализ той фазы работы ученого, в которой происходит зарождение новых идей, объединяя при этом изучение публикуемых им результатов с непосредственными свидетельствами, зафиксированными в различных документах (таких, как письма, интервью, дневники, лабораторные журналы и т.п.). В исследованиях такого рода может открыться много неожиданного. Так, документы, с которыми мне пришлось работать в связи с изучением творчества Эйнштейна, вынудили меня пересмотреть роль опыта Майкельсона по отношению к первоначальной эйнштейновской формулировке теории относительности. Если вначале предполагалось, что этот эксперимент был одним из важнейших стимулов к созданию эйнштейновской теории, то теперь обнаружилось, что его роль была лишь косвенной и не слишком значительной в противоположность традиционным объяснениям и описаниям последовательности событий, дающихся практически во всех физических текстах, затрагивающих данную проблематику. Именно в деталях документированных данных о тех или иных конкретных событиях, в тонкой структуре этих деталей можно надеяться обнаружить необходимый материал для создания и проверки теории творческого воображения в науке, даже если такая задача и не получит быстрого и легкого разрешения.

Во-вторых, я стараюсь рассматривать любой результат научной деятельности, опубликованный или неопубликованный, в качестве некоторого «события», расположенного на пересечении тех или иных исторических «траекторий» — таких, как по преимуществу индивидуальные и осуществляющиеся наедине с самим собой личные усилия ученого; «публичное» научное знание, разделяемое членами того сообщества, в которое входит этот ученый; совокупность социологических факторов, влияющих на развитие науки, и, несомненно, общий культурный контекст данного времени, значение которого открывается, например, когда мы обнаруживаем, чем обязан был Нильс Бор некоторым философским и литературным произведениям.

В-третьих, в моих исследованиях особое внимание уделяется тому, чтобы установить, в какой мере творческое воображение ученого может в определенные решающие моменты его деятельности направляться его личной, возможно, даже еще неявной приверженностью к некоторой определенной теме (или нескольким таким темам). Верность подобным глубинным установкам может как способствовать исследованиям, так и тормозить их; как однажды Эйнштейн писал де Ситтеру: «Убежденность — это хороший двигатель, но плохой регулятор». Тематическую структуру научной деятельности можно считать в основном независимой от эмпирического или аналитического содержания исследований; она появляется в процессе изучения тех возможностей выбора, которые были в принципе открыты ученому. Эта структура может играть главную роль в стимулировании научных прозрений, в их принятии или в возникновении споров и разногласий по отношению к ним.

Остается еще один аспект, последний по порядку, но не по значению: я стараюсь рассматривать также и практические последствия полученных ре-

660

зультатов для развития исследований в области философии и истории науки, для лучшего понимания того места, которое наука занимает в нашей культуре, для общеобразовательных программ. (С. 7-8)

Темы в научном мышлении

Историк науки, философ, социолог или психолог, изучающий итоги научной работы, будь то опубликованная статья, запись в лабораторном журнале, стенограмма интервью либо обмен письмами, обычно имеет дело прежде всего с каким-то событием. Можно выделить не менее восьми различных аспектов подобных событий, каждый из которых будет соответствовать специфическому типу нетривиальных в исследовательском плане проблем.

Прежде всего, встает вопрос о понимании научного содержания события, как оно складывается в определенное время — и в интерпретации современников, и, само собой, в терминах наших сегодняшних представлений. Что было спорного в утверждениях ученого? Какие препятствия реально вставали на его пути? Чтобы разобраться в этих вопросах, мы и пытаемся воспроизвести его осознание так называемых научных фактов, данных, законов, теорий, технических средств и сопутствующих сведений, причем именно

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

344

345 of 513

в контексте обобществленного научного знания того времени. К этому пункту я склонен причислить большую часть исторических изысканий, относящихся к тому, что принято называть научным мировоззрением, образцами научной деятельности и исследовательскими программами. Однако историки и ученые все еще заинтересованы по преимуществу в том, чтобы выявить идеи и допущения, связанные с изучаемыми событиями, и перевести их на эмпирический и аналитический языки.

Во-вторых, существует проблема временной траектории того состояния научного знания, которое разделяется учеными (т.е. «обобществленный», «публично выраженный», а не частный характер); эта траектория ведет к периоду, в который мы помещаем событие, и, возможно, уходит за ero границы. <...> Такое прослеживание концептуальной эволюции и «контекста оправдания» является наиболее распространенной и интенсивно осуществляемой деятельностью историков науки и ее исторически мыслящих пропагандистов.

Третий аспект относится к изучению более уникальных индивидуальных черт той деятельности, в которую погружено событие Е. Здесь мы переходим к контексту открытия, пытаясь понять «момент рождения», который может быть далеко не достаточно документированным и отнюдь не обязательно осознаваемым или понимаемым даже самим действующим лицом. <...> Одна из функций самих социальных институтов науки

— таких, как механизмы публикаций, научные встречи, отбор и подготовка молодых ученых, — как раз и состоит в том, чтобы свести к минимуму внимание к этой стороне дела. По-видимому, и успехи науки как коллективной деятельности связаны именно с систематическим пренебрежением тем, что Эйнштейн называл «личными усилиями». Более того, очевидное противоречие между зачастую «алогичной» природой научного открытия, как оно происходит в действительности, и логичностью хорошо разработанных фи-

661

зических понятий воспринимается подчас как угроза самим основаниям и науки, и даже рациональности. (С. 19-20)

Четвертой компонентой исторических исследований является установление временной траектории именно этой, по преимуществу «частной», научной деятельности — непрерывности и разрывов в индивидуальном развитии ученого или науки в процессе ее создания, как она воспринимается им через призму его индивидуальных усилий. Теперь уже событие E в момент времени t предстает как точка пересечения двух траекторий, двух Мировых Линий, одна из которых прочерчивается для «публичной науки» (назовем ее S2), а другая — для «частной» (S1), если использовать полезную, если ей не злоупотребляют, терминологию сокращенной записи.

В-пятых, возникает целая историческая полоса, параллельная траектории S1 и заканчивающаяся на ней как на одной из своих границ, которая выделяет всю психобиографическую эволюцию человека, чьи работы сейчас изучаются. Здесь перед нами разворачивается новая и интригующая воображение область исследований взаимосвязей между научной работой индивида и ero частным образом жизни.

Шестым аспектом неизбежно станет изучение социологической обстановки, условий или влияний, порождаемых коллегиальными связями, динамики групповой работы, состояния профессионализации в данное время, институциональных механизмов финансирования, оценки и принятия исследований, включая и количественные тенденции в данной сфере. Здесь мы вступаем в область анализа научной политики и социологии науки в узком смысле этого термина.

В-седьмых, появляется еще одна полоса, параллельная траекториям S1 и S2 и переходящая в них; здесь выделяются те аспекты культурной эволюции за пределами науки, которые влияют на нее или испытывают ее влияние, в связи с чем возникают проблемы обратных связей, соединяющих между собой науку, общество и технологию, науку и этику, науку и литературу.

Наконец, существует и логический анализ изучаемых научных работ. Будучи сначала учеником, а позднее коллегой Перси Бриджмена и Филиппа Франка, я в своем собственном развитии прежде всего прошел через фазу глубокого интереса и уважения к плодотворному анализу логики науки, которая предшествовала работе в области ее собственно исторических аспектов.

Эти восемь областей исследований отнюдь не разделены какими-то непреодолимыми барьерами. Конечно, каждая область требует собственной специализации, а потому и своего операционального самовычленения. <...> (С. 21-22)

Почему ученые нередко в глубине души не признают дихотомии между контекстами верификации и открытия, принимая ее в то же время публично? Если и в самом деле, как считал Эйнштейн, процесс чисто дедуктивного конструирования законов лежит «далеко за пределами способности человеческого мышления», то что же может направлять прыжок через пропасть, разделяющую опыт и фундаментальные принципы? Что скрывается за квазиэстетическими по внешности выборами, которые делают некоторые ученые, например отвергая «ad hос»-гипотезу, то, что для других уче-

662

ных может выглядеть как неоспоримое учение? Ограничены ли основания подобных выборов лишь научным воображением или они выходят за его рамки?

Чтобы работать с такими проблемами, я предложил девятую компоненту анализа научной деятельности, а именно тематический анализ (термин, известный благодаря его использованию в антропологии, искусствоведении, теории музыки и ряде других областей). Во многих (возможно, в большинстве) прошлых и настоящих понятиях, методах, утверждениях и гипотезах науки имеются элементы, которые

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

345

346 of 513

функционируют в качестве тем, ограничивающих или мотивирующих индивидуальные действия, а иногда направляющих (нормализующих) или поляризующих научные сообщества. Обычно они не находят явного выражения ни в предлагаемых самими учеными публичных представлениях их работ, ни в любых последующих научных спорах. Тематические понятия, как правило, не фигурируют в алфавитных указателях учебников и не входят в число терминов, которые в изобилии встречаются в профессиональных журналах или дискуссиях. Все эти традиционные обсуждения ограничены главным образом эмпирическим и аналитическим содержанием, т.е. воспроизводимыми явлениями и логико-математическими конструкциями. Используя довольно грубую аналогию, я предложил рассматривать элементы этих двух типов в качестве х- и y-координат на той плоскости, в которой проходит большинство дискуссий, ибо «осмысленность» всех конструкций проверяется здесь посредством разложения понятий и утверждений на подобные элементы, критерием «осмысленности» которых считается то, что обычно существуют общепринятые правила, пригодные для верификации или фальсификации высказываний, сделанных в этом языке. (С. 24-25)

Появляющиеся в науке темы можно — в нашей приблизительной аналогии — представить в виде нового измерения, ортогонального к (х-у)-плоскости, т.е. чем-то вроде оси г. Хотя эта плоскость удовлетворяет большинству дискурсивных потребностей науки как публично выраженной и осуществленной на основе единства мнений деятельности, однако для более полного анализа (исторического, философского или психологического) научных утверждений, процессов и противоречий мы нуждаемся во всем трехмерном (х- y-z)-пространстве. (Я не выступаю за то, чтобы в практику самой науки вводить тематические споры или даже осознанное понимание различных тем. Одно из ее величайших преимуществ в том и состоит, что многие проблемы — скажем, относящиеся к «реальности» научного знания — просто не могут ставиться в (х-y)-плоскости. Наука стала быстро расти лишь тогда, когда подобные вопросы были выведены за рамки лабораторной деятельности.) Полезно выделить три аспекта использования тем: тематическое понятие, или тематическая компонента понятия <...>; методологическая тема (скажем, установка на выражение научных законов всюду, где это возможно, в терминах, каких-то постоянств, или экстремумов, или запретов); тематическое утверждение либо тематическая гипотеза (иллюстрациями здесь могут послужить такие фундаментальные положения, как ньютоновская гипотеза о неподвижности центра мироздания или два принципа специальной теории относительности). (С. 25-26)

663

Один из результатов тематического анализа, связанный, по-видимому, с диалектической природой науки как коллективной деятельности, направленной на достижение единства суждений ее участников, состоит в том, что альтернативные темы зачастую связываются в пары, как случается, например, когда сторонник атомистической темы сталкивается с защитником темы континуума. Подобные парные оппозиции, такие, как эволюция и регресс, постоянство и простота, редукционизм и холизм, иерархия и единство, эффективность математики (скажем, геометрии) и эффективность механических моделей как объяснительных средств, не так уж трудно распознать, особенно в ситуациях, когда возникают разногласия или появляются достижения, явно возвышающиеся над средним уровнем научных исследований.

Я был удивлен малостью общего числа тем — по крайней мере в физических науках. Подозреваю, что суммарное количество одиночных тем, дублетов и возникающих подчас триплетов не превзойдет и сотни. Появление новой темы — событие редкое. Дополнительность (1927) и киральность (50-е годы) — вот примеры последних добавлений к тематическому арсеналу физики. С этой малостью связана древность многих тем и их постоянное воспроизведение как в течение спокойной эволюции науки, так и во время «революций». Так, старая антитеза среды и пустоты всплыла на поверхность происходивших в начале нашего столетия споров о «реальности молекул»; по сути, ее можно найти и в современных работах по теоретической физике. Можно даже предсказать, что нововведения ближайшего будущего, сколь бы радикальными они ни казались, вероятнее всего, получат выражение по преимуществу в терминах используемых сегодня тем.

Возможно, именно сохранение со временем относительно небольшого запаса тем, циркулирующих в любой данный момент в сообществе ученых, и наделяет науку, несмотря на весь ее рост и изменчивость, той индивидуальностью, которой она обладает. Междисциплинарная общность тем, используемая в различных областях, бросает свет как на смысл всей научной деятельности, так и на единую основу действующих здесь механизмов воображения. (С. 27-28)

Предостережение

<...> позвольте закончить статью перечнем ограничений, которые я усматриваю в тематическом анализе научной работы.

1.Хотя определенные темы могут сильно влиять на ход мысли ученых или научного сообщества и тем самым составлять наиболее интересные аспекты изучаемой ситуации, однако наука, как прошлая, так и современная, содержит и такие важные компоненты, в отношении которых тематический анализ, судя по всему, не слишком полезен. <...> (С. 39-40)

2.Даже если бы это было и не так, я не хотел бы, чтобы стали думать, что тема — это главная реальность научной работы. <...> Нет сомнения, что темы науки испытывают подъемы и упадки, претерпевают последовательные этапы уточнений, а подчас забрасываются или вводятся заново. Но в равной мере

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

346

347 of 513

несомненно и то, что в целом здесь происходит прогрессирующее движение ко все более исчерпывающему и глубокому пониманию природных явлений.

664

3.Изучение роли тем в работе ученого может быть в равной мере интересным вне зависимости от того, куда ведет эта работа — к «успеху» или «неудаче», ибо приверженность определенному тематическому набору сама по себе еще не предопределяет, окажется ли этот ученый правым или ошибется. Как бы то ни было, но всякие попытки «очиститься» от тем, чтобы улучшить этим свою науку, будут, по всей вероятности, бесплодными. Но тщательное изучение возможных преимуществ тем, противоположных нашим собственным, могло бы привести к благотворным результатам.

4.Нам необходимо больше знать об источниках тем. Для меня совершенно ясно, что хорошим исходным пунктом в этом деле был бы подход, акцентирующий взаимосвязи между когнитивной психологией и индивидуальной научной деятельностью. Как я уже отмечал, большинство составляющих частей тематического воображения ученого, быть может даже все оно целиком, оформляется еще до того, как он превращается в профессионала, а некоторые из особенно прочно удерживающихся тем заметны даже в детстве. Все это, конечно, стоит дальнейших исследований.

5.Тематическая ориентация ученого, раз сформировавшись, обычно оказывается на удивление долгоживущей, но и она может изменяться. <...> Более того, принятие определенной темы, скажем, атомизма, в одной области физики не предотвращает подчас принятия противоположной темы этим же ученым, когда он обращается к другой области <...> (С. 40-41)

6.Хотя первичными носителями тем являются, как правило, отдельные ученые, по сами темы с небольшими вариациями принимаются и целыми научными сообществами. «Карьера» таких тем может быть неплохо понята в терминах жизненного цикла; иначе говоря, сначала темы могут испытывать подъем и широко приниматься, затем это принятие может сужаться и в конце концов сходить на нет. Объяснительные способы, подобные соответствию между макрокосмом и микрокосмом, неотъемлемым принципам, телеологическим стимулам, действию на расстоянии, космической среде, организмической интерпретации, скрытым механизмам, абсолютности пространства, времени и одновременности, в свое время господствовали в физике. Мы и сейчас нуждаемся в детальном изучении механизмов таких подъемов и упадков.

7.Всегда остается опасность спутать тематический анализ с чем-то иным: юнговскими архетипами, метафизическими концепциями, парадигмами и мировоззрениями. (Вполне может оказаться, что два последних члена этого перечня содержат в себе тематические элементы, однако в целом различия между ними совершенно неустранимы. <...> Тематические решения в гораздо большей степени по сравнению с парадигмами или мировоззрениями обусловливаются прежде всего индивидуальностью ученого, а не только его социальным окружением или «сообществом».) Хотя тематический анализ и может быть ограничен в своих возможностях требованием обязательного использования какого-то опыта непосредственной работы с научными материалами, однако выигрыш от тщательного изучения реальных ситуаций кажется мне куда более значительным по сравнению с тем, что может быть получено на основе таких новомодных направлений, как сравнительный анализ различных историографи-

ческих школ или изобретение спекулятивных «рациональных реконструкций».

8.Наконец, существует и потребность в самосознании. В истории науки поиски ответов сами по себе не в меньшей степени тематически насыщены, чем поиски единой теории элементарных частиц. Поэтому надо приготовиться к критике со стороны тех, у кого раздражение вызывают не сами наши темы, а скорее их антитемы; и нам следует быть готовыми подняться над ограничениями, в рамках которых мы неизбежно работаем, как это сделал Эйнштейн, с присущей ему свободой сказав: «Приверженность идее континуума вырастает во мне не из предубеждения, а просто из того, что я не могу придумать ему органическую замену». Его собственная деятельность свидетельствует, конечно, о том, что человек на деле способен превратить такие имманентные границы своего научного воображения из слабости в силу, а не просто сожалеть о них или пренебрегать ими. (С. 42-43)

ГЕРМАН ХАКЕН. (Род. 1927)

Г. Хакен (Haken) — известный немецкий ученый, один из основателей синергетики. Термин «синергетика» был им введен в 1969 году для обозначения научного подхода, исследующего процессы самоорганизации в физических, химических и биологических системах. Ныне под синергетикой понимают мощное направление междисциплинарных научных исследований, в рамках которого изучаются процессы перехода от хаоса к порядку в открытых нелинейных системах. Начав свою научную деятельность как физиклазерщик, Хакен принципиально расширил круг своих исследований природы самоорганизации (как последовательности фазовых переходов при соответствующем действии управляющих параметров) от физики лазеров до нейросинергетики и социосинергетики. В целом синергетика, по Хакену, исследует процессы эволюции сложных систем как их самоорганизацию. В кратком виде ее часто называют концепцией (теорией) самоорганизации, а более широко — теорией нелинейных процессов. Подобный подход настолько адекватно характеризует главные особенности современной науки, называемой

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

347

348 of 513

постнекласссической, что многие актуальные проблемы науки раскрываются сквозь призму синергетической парадигмы. Взгляды Хакена представлены ниже на основе одной из последних опубликованных им книг, которая служит прекрасным примером реализации синергетического подхода к изучению естественно-научных и философских проблем общества и человека на основе таких сложных процессов, как функционирование головного мозга, поведения и реализации познавательных возможностей человека.

На русском языке опубликованы следующие работы Хакена: Синергетика. М., 1980; Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М., 1985; Информация и самоорганизация. М., 1991; Принципы работы головного мозга. М, 2001.

В.Н. Князев

Нашу книгу можно рассматривать как попытку построить последовательную теорию активности мозга на макроскопическом уровне. Мы рас-

Приведенные фрагменты текста взяты из книги: Хакен Г. Принципы работы головного мозга. М., 2001.

667

сматриваем мозг как гигантскую сложную систему, которая подчиняется законам синергетики, т.е. функционирует вблизи точек потери устойчивости, где макроскопические паттерны определяются параметрами порядка.

Принцип подчинения наводит мост между макроскопическим и микроскопическим уровнями. В прошлом из-за сложности функционирования мозга в области теории мозга доминировали его словесные описания. В настоящее время ситуация быстро изменяется из-за двух основных направлений исследований. Одно из них, которое можно было бы назвать коннекционизмом, восходит корнями к модели Мак-Каллоха-Питтса, о которой мы кратко упоминали в гл.18. Другим направлением можно считать последовательную реализацию математического моделирования головного мозга на основе идей синергетики. Эта программа в общих чертах изложена в нашей книге. Сказанное отнюдь не означает, будто не существует других подходов, но, насколько можно судить, другие подходы уступают по широте синергетическому. Очень часто словесные описания кажутся более гибкими из-за неоднозначности, присущей самой природе языка. В отличие от вербальных математические подходы операциональны, т.е. допускают строгую проверку сделанных утверждений. По-видимому, наиболее адекватный подход должен был бы лежать где-то посредине, т.е. не должен был бы быть столь жестким, как существующие ныне математические подходы, и должен был бы носить более количественный характер, чем обычные словесные описания. (С. 307)

Дух и материя — вечный вопрос

Изложенные нами подходы наглядно демонстрирует всю важность одной существенной идеи синергетики, а именно идеи самоорганизации системы, косвенно управляемой приданием подходящих значений управляющим параметрам. Придание управляющим параметрам определенных значений — задача отнюдь не тривиальная. Всякий раз, когда возникает необходимость в фиксации управляющих параметров в уравнениях модели, будь то уравнения, описывающие постукивание пальцами, или анализа МЭГ, решения чувствительно зависят от значений параметров. В этой связи возникает очень глубокая проблема, а именно вопрос: кто придает соответствующие значения управляющим параметрам в мозгу? Верна ли идея Экклса, согласно которой мозг представляет собой вычислительную машину, или компьютер, а его программа, или

— в терминах самоорганизации — значения его управляющих параметров, определяются разумом? Я глубоко убежден, что управляющие параметры задаются мозгом через другие процессы самоорганизации на ином уровне, нежели уровень уравнений, определяющих, например, те или иные движения. Имеется ряд указаний относительно того, каким образом может быть достигнуто придание параметрам подходящих значений: один из возможных путей — обучение, т.е. изменение синаптических сил. Косвенным указанием на придание соответствующих значений управляющим параметрам служат так называемые Bereiftschatspotentiale (потенциалы готовности), открытые Корнхубером и Дикке (1965). В соответствующих экспериментах испытуемого просят, например, поднять указательный палец всякий раз, когда ему того захочется.

668

В какой-то момент времени палец поднимается. Но (в этом и состоит решающее открытие), как показывает ЭЭГ, примерно за 60 миллисекунд в мозгу возникают специфические электрические потенциалы. Мозг как бы заранее готовится к предстоящему действию. По моему мнению, возникновение Bereiftschatspotentiale является еще одним актом самоорганизации, предшествующим другим актам самоорганизации, который приводит к установлению соответствующих значений управляющих параметров. Возникает очевидная трудность: что «запускает» самоорганизацию Bereiftschaftspotentiale? Я полагаю, что происходит трансформация микроскопических явлений в макроскопические проявления в форме электрических потенциалов. По моему убеждению, все действия мозга, которые ныне считаются нематериальными, в действительности связаны с материальными процессами. Например, команда (передаваемая по материальным путям) материально хранится в нейронах (или синапсах и т.п.), а затем (может быть, спонтанно) активируется (возможно, флуктуацией). Экспериментальное доказательство моей гипотезы затруднительно, по крайней мере в настоящее время, поскольку о материальной основе памяти известно

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

348

349 of 513

слишком мало.

Я отнюдь не утверждаю, что все свойства разума являются всего лишь результатом материальной активности мозга. Моя точка зрения основывается на концепции параметров порядка и принципа подчинения, включая принцип круговой причинности. Иначе говоря, моя интерпретация состоит в том, что абстрактные процессы управляются параметрами порядка (и их изменениями) и что материальные процессы, описываемые отдельными переменными системы, обуславливают друг друга. Возможно, не так уже плохо, что эти утверждения непроверяемы или носят «философский» характер. Причина заключается в том, что мозг необычайно сложен и возникновение новых качеств может происходить на множестве различных уровней от микроскопического до макроскопического, и поэтому установить все корреляции, необходимые для доказательства того, что новое качество действительно возникло, может быть очень трудно.

В нашей книге мы не раз по различным поводам отмечали, что наличие параметров порядка и действие принципа подчинения влекут за собой колоссальное сжатие информации. Характерные сложные микроскопические конфигурации управляются одним или несколькими параметрами порядка. Ярким примером того, как действует сжатие информации, служит сам язык. Какое-нибудь простое слово, например, «собака», включает в себя неисчерпаемое разнообразие пород, окраса, форм, осанок и т.п. Коммуникация стала возможной лишь благодаря сжатию информации в указанном выше и других смыслах. Вместе с тем сжатие информации порождает неоднозначности, и эффективность языка заключается в балансе между однозначностью и неоднозначностью.

Интересно отметить, что сжатие информации можно обнаружить и в управлении двигательной активностью. Как было показано нами в эксперименте с педало, это движение в конечном счете после обучения управляется одним комплексным параметром порядка, удовлетворяющим весьма универсальному уравнению для параметра порядка, а именно осциллятор-

669

ному уравнению Ван дер Поля. С другой стороны, отдельные параметры порядка необходимо сделать эффективными путем трансляции на многие степени свободы, например, на мышечные клетки. Этот процесс можно рассматривать как инфляцию информации. Таким образом, принцип подчинения имеет в определенном смысле два аспекта: с одной стороны, принцип подчинения служит сжатию информации, с другой — порождает инфляцию информации.

Еще один аспект заслуживает обсуждения: природа параметров порядка. За редким исключением параметры порядка нематериальны, например, параметром порядка может быть фазовый угол, как в примере с движением пальца. Это немедленно приводит нас к проблеме «дух-материя» или «разум-тело»: как такая нематериальная величина, как параметр порядка, может управлять поведением материальной системы, например, мышц? С чисто математической точки зрения никакая проблема, разумеется, не существует: фазовый угол и сокращение мышечных клеток могут быть описаны математическими переменными и их уравнениями движения. Как показано в синергетике, отдельные части системы с их переменными q приводят к возникновению параметров порядка ξ, которые в свою очередь через принцип подчинения управляют поведением частей системы. Математически это выражается так:

т.е. q становится функцией параметров порядка ξ . Но в физике и еще в большей мере в философии мы хотим интерпретировать соотношения, или, иначе говоря, придать им смысл. Например, закон Ньютона ma=F (2)

т.е. произведение массы частицы на ее ускорение а равно действующей на частицу силе F, интерпретируют, утверждая: «сила F есть причина ускорения частицы». Что можно было бы считать интерпретацией соотношения (1)? Утверждение о том, что q представляет переменные материальных составляющих системы, например, мышечных клеток, тогда как параметр порядка ξ представляет нематериальную величину (разум?). По аналогии между (1) и (2) можно было бы сказать: «Дух определяет поведение материи».

С другой стороны, как упоминалось выше, q порождает ξ, или, если прибегнуть к интерпретации, «материя определяет дух». (Знаменитая книга Дельбрюка так и называется: «Дух из материи».) Наконец, нельзя не упомянуть о круговой причинности: дух и материя взаимно обуславливают друг друга, или, иначе говоря, дух и материя - две стороны одной и той же медали. Такова моя точка зрения, но она не нова. Как я узнал от Атлана, этой точки зрения придерживался Спиноза. Боюсь, что по проблеме духа и материи могут быть высказаны и дискутироваться совершенно различные точки зрения. По моему мнению, в данном случае трудность начинается, когда мы переходим от математики к онтологии мозга и разума.

670

Каков бы ни был исход таких диспутов и обсуждений, я все же склоняюсь к понятию параметра порядка и принципу подчинения, по крайней мере как метафора проблемы разум-тело, а может быть и более широкой проблемы.

Некоторые открытые проблемы

В науке хорошо известно, что решение одной проблемы часто порождает дюжину новых вопросов. Разумеется, это применимо и к подходу, изложенному в нашей книге. Мозг — необычайно сложная система,

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

349

350 of 513

и, как я упомянул в начале, эта система многогранна. Существуют многочисленные вопросы, которые не получили ответов в нашей книге или ответы на которые вообще не известны. Назову лишь некоторые из них. Один из таких вопросов: где локализована память? Локализована ли память в синапсах или, более конкретно, в рецепторах? Может быть, как подозревают некоторые ученые, например, Хамероф (1987).

Проблема, которую я совсем не обсуждаю, — рост и развитие мозга. Эта проблема носит весьма фундаментальный характер, так как структура и функция взаимно обуславливают друг друга. Затронутая нами тема столь обширна, что заслуживает особой книги.

Еще одна проблема, которую я умышленно обошел молчанием, — сознание. Как заметил в своей последней книге Фриман (1995), эта проблема возникала снова и снова по крайней мере через каждые пятьдесят лет. По своему собственному опыту я знаю, что чем ближе область собственных исследований ученого к исследованию мозга, тем реже этот ученый говорит о проблеме сознания. Таково общее положение дел. Разумеется, не обходится и без исключений. Тем не менее создается впечатление, что все, кто так или иначе связан с исследованием активности мозга, весьма неохотно обсуждают проблему сознания. В качестве выдающихся контрпримеров можно назвать Крика и Коха (1990), а также Эдельмана (1992). Все они предложили различные научные подходы к проблеме сознания, но лично я предпочитаю оставить ее без обсуждения. То же относится и к таким свойствам, как восприятие цвета или ощущение боли. По моему мнению, эти свойства не поддаются (по крайней мере в настоящее время) математическому моделированию в указанных выше направлениях.

Каково же будущее изложенного мной подхода? Ясно, что мы можем предпринять попытки построить более сложные математические модели в рамках синергетики и подвергнуть анализу более сложные движения или типы поведения. Обширная область моделирования, которая еще только начинает развиваться, — это создание теории связанных нелинейных осцилляторов, которая позволила бы описать специфические эксперименты по зрительному восприятию, о чем говорилось в гл. 2 (см., например, Тасс и Хакен (1995)).

В качестве заключения упомяну несколько общих проблем.

1) Наш мозг — вычислительная машина? При обсуждении этой проблемы необходимо иметь в виду, что за прошедшие века понятие машины претерпело значительные изменения. Первоначально под машиной понимали простое устройство, например, рычаг или молот, для выполнения механи-

671

ческой работы. В наши дни мы говорим о компьютере как о машине. Кроме того, в настоящее время к машинам применяют ряд понятий, заимствованных из биологии. В контексте конструирования машин мы встречаем такие понятия, как самоорганизация, самовосстановление, самосборка, самоуправление и т.д. Обратите внимание, как широко «самость» вторглась в мир машин! Поэтому когда речь заходит о сравнении мозга с машиной, необходимо тщательно оговаривать, какого рода машина имеется в виду. Мозг заведомо не является машиной в первоначальном смысле слова, а именно — созданным человеком устройством для выполнения определенных задач. Но по мере того как мы наделяем машину все новыми и новыми биологическими аспектами, различие между мозгом и машиной стирается все больше. Ситуация выглядит так, как если бы между человеческим мозгом и человеческим мозгом (это не опечатка!) шла некая престижная гонка. С одной стороны, человеческий мозг стремится построить машину, возможности которой были бы равны возможностям мозга, а с другой стороны, человеческий мозг стремится доказать свое превосходство перед машиной. (Нечто подобное мы обнаруживаем в сравнении человеческого мозга с компьютером. Эту ситуацию мы обсудили в гл. 18, и поэтому не будем повторяться.)

2)Мозг и чипы, или протезы мозга. Интересная задача — установление физической связи между нейронами и чипами. Решением ее занимается, например, Фромхерц (1994). Мы находимся здесь в самом начале пути, и делать сколько-нибудь определенные прогнозы относительно будущего развития, например, относительно чипов, имплантированных в поврежденный мозг или увеличения информационной емкости мозга (протезы мозга). Только будущее покажет, имеем ли мы дело с научной фантастикой или реальностью. Но с абстрактной точки зрения синергетики кооперативные эффекты могут приводить к такому же макроскопическому поведению систем с совершенно различными микроскопическими компонентами. Существенны лишь параметры порядка.

3)Креативность. Наконец, было бы уместно сказать несколько слов о креативности. До сих пор я полностью обходил молчанием эту проблему. В действительности креативность представляется мне самой глубокой из всех головоломок, связанных с мозгом. Под креативностью имеется в виду рождение идей, которые не рождались никогда прежде и более того — рождение которых в высшей степени маловероятно. Рождение новой идеи можно уподобить головоломке, при решении которой после многих безуспешных попыток из кусочков причудливой формы внезапно складывается картинка. Акт творения сравнительно легко охарактеризовать на словесном уровне, например, как конкуренцию и кооперацию различных идей в форме параметров порядка. По поводу такого рода определений трудно удержаться от критических замечаний: высказывать подобные сентенции — пустое дело, они не дают нам никакого операционального подхода и не дают рецепта, который позволял бы решить головоломку или найти новую фундаментальную идею. Может быть, хорошо, что природа гения все еще окутана тайной. (С.309-314)

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

350

351 of 513

РЕГИНА СЕМЕНОВНА КАРПИНСКАЯ. (1928-1993)

Научные интересы P.C. Карпинской — доктора философских наук, профессора, заведующей сектором философии биологии Института философии РАН — лежали в сфере анализа философских оснований биологии, ее роли в изучении человека, а также в решении глобальных проблем современности. В процессе анализа методологических вопросов молекулярной биологии, генетики, теории эволюции Карпинская обосновала положение о различии стилей мышления естествоиспытателей при структурно-функциональном и историческом исследовании биологических явлений, при изучении жизни с целью познания законов ее организации или же эволюции. Анализируя соотношение принципов редукционизма и интегратизма, она продемонстрировала гетерогенность, разнокачественность методологических средств, используемых в различных биологических науках. Вместе с тем Карпинская была убеждена в необходимости разработки целостного подхода к феномену жизни. Она показала, что потребность в таком подходе особенно увеличивается в связи с социально и культурно детерминированным изменением современного образа биологической реальности и усилением ценностной, гуманистической ориентированности биологического познания. Карпинская уделяла существенное внимание разработке идеи коэволюции применительно к различным уровням организации жизни, вплоть до коэволюции природы и общества; именно эта идея оценивалась ею как центральная в методологии биологии. Размышляя над мировоззренческими проблемами биологии, ее значением для постижения человека, Карпинская приходит к выводу о формировании биофилософии как нового междисциплинарного направления.

О.С. Суворова

Гносеологическим оптимизмом можно назвать ту уверенность в возможности получения точного знания, которая воодушевляет современного биолога-экспериментатора. На его вооружении такое богатство физико-химических, кибернетических, математических методов, что познание наисложнейших механизмов жизнедеятельности (например, молекуляр-

Приводятся отрывки из книги: Карпинская P.C. Теория и эксперимент в биологии: мировоззренческий аспект.

М., 1984.

673

ных основ функционирования мозга) рассматривается лишь как вопрос времени.

Однако гносеологический оптимизм сопряжен с возросшей гносеологической ответственностью. Дело в том, что широкое изучение механизмов жизнедеятельности предполагает понимание любого биологического объекта как «многослойного», воспроизводимого в своей целостности лишь на путях совмещения различных уровней изучения <...> (С. 92).

<...> эта ответственность нужна прежде всего при определении объекта эксперимента, «вписанного» в адекватный объекту уровень познания, т.е. проявляется на самых исходных рубежах экспериментальной деятельности ученого. Корреляция между объектом и уровнем его рассмотрения (генетическим, физиологическим, поведенческим, эволюционным и т.д.) является не чем иным, как специфично биологической формой проявления субъект-объектного отношения, в котором объективность содержания задается свойствами избранного фрагмента биологической реальности, а сам выбор этого фрагмента и способы оперирования с ним определяются целью исследования и зависят от субъекта. <...> (С. 95-96)

<...> в нашей литературе отмечается возрастание активности субъекта, обусловленное прежде всего эвристичными возможностями методов точных наук, использование которых все больше приближает биологический эксперимент к эталонам физического знания. Воздействие точных наук на биологию привело к появлению довольно устойчивой закономерности предвосхищения «нового пласта» в сугубо абстрактной, логической форме. Выдвижение четких задач исследования и построение логической схемы их решения до начала эксперимента — существенное отличие современной биологии от ранее господствовавшего описательного, индуктивного пути ее развития. <...> (С. 96)

<...> в философских понятиях можно говорить, что и опережающая функция логического мышления, и создание комплексов методов, и методологическая ответственность ученых базируются на рефлексии знания, ставшей органичной для биологии. В этом выражается степень зрелости науки, возросший уровень ее теоретичности. <...> (С. 97)

Использование методов точных наук предоставляет небывалые ранее возможности объективной оценки результатов эксперимента, но вместе с тем повышает и уровень требований не только к эксперименту, но и к его правильной, грамотной с общебиологической точки зрения интерпретации, к его связи с проверенной теоретической концепцией. Тем самым экспериментатор все активнее втягивается в такую самооценку своей деятельности, которая предполагает широкую общебиологическую культуру, осознание современных тенденций развития биологического знания. <...> (С. 97)

Биология не составляет исключения в отношении той общей закономерности научного познания, что эксперимент вызывается к жизни определенным уровнем теоретического знания, отвечает на его запросы и имеет смысл лишь в контексте той или иной теоретической концепции. Дело осложняется, однако, тем, что по своему характеру теоретическое знание в биологии существенно отличается от такового в точных науках. Даже современная эволюционная теория как наиболее развитое теоретическое зна-

674

ние не имеет достаточно строгой логической структуры, однозначно интерпретируемых исходных понятий, хотя, безусловно, выполняет и в таком виде важнейшую методологическую функцию интегратора всего

Философия науки = Хрестоматия = отв. ред.-сост. Л.А Микешина. = Прогресс-Традиция = 2005. - 992 с.

351