Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры для АСОИ, 2012, 91 вопрос (Мельников).doc
Скачиваний:
184
Добавлен:
15.06.2014
Размер:
8.05 Mб
Скачать

40. Тринисторы

Тринистором, или, иначе, триодным тиристором, называют переключательный компонент с тремя электронно-дырочными переходами, и тремя выводами – анодом, катодом и управляющим электродом. Тринисторы обладают аналогичной динисторам структурой, а отличие состоит в наличии управляющего электрода – дополнительного вывода, подключённого к одной из баз. Если через управляющий электрод тринистора пропустить отпирающий ток, то тринистор перейдёт в открытое состояние. В зависимости от того, к какой именно из баз будет подсоединён управляющий электрод, можно организовать включение тринистора при приложении отпирающего напряжения между управляющим электродом и либо анодом, либо катодом. Вольтамперная характеристика тринистора похожа на вольтамперную характеристику динистора. Однако отпирание тринистора обычно происходит при существенно более низком прямом напряжении, чем необходимо динистору, и к открыванию тринисторной структуры приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода, тем при более низком прямом напряжении тринистор перейдёт в открытое состояние.

На рисунке обозначено:I – участок, на котором тринистор открыт;

II – участки отрицательного сопротивления и пробоя коллекторного перехода;

III – участок запертого состояния тринистора в прямом включении;

IV – участок обратного включения динистора

Когда через управляющий электрод протекает отпирающий ток, возрастает скорость носителей заряда, которые инжектируются через коллекторный переход, что инициирует принудительное отпирание тринистора. После включения незапираемый тринистор не реагирует на изменение силы тока управляющего электрода. Чтобы закрыть тринистор, необходимо уменьшить силу тока, протекающего по аноду и катоду, ниже тока удержания, либо поменять полярность напряжения, приложенного между анодом и катодом. Если управляющий электрод тринистора обесточен, то тринистор функционирует совершенно так же, как динистор. В незапираемых тринисторах управляющий электрод занимает небольшой участок кристалла полупроводника, ориентировочно в несколько процентов.

Тринисторы широко применяют в регуляторах мощности, контакторах, ключевых преобразователях и инверторах и пр. Некоторое ограничение на внедрение тринисторов накладывает их частичная управляемость.

41. Вакуумный фотоэлемент

Вакуумный фотоэлемент представляет собой электровакуумный прибор, внутри которого находятся два электрода – анод А и катод К (рис. 32а). Свет, падающий на катод, вырывает из его поверхности электроны, что приводит к увеличению тока, протекающего в цепи и напряжения на резисторе R. Изменение тока, текущего через фотоэлемент при его освещении можно использовать для включения и выключения различных устройств. Чтобы увеличить чувствительность фотоэлемента, поверхность его катода покрывают веществом с малой работой выхода.

Поглощение электромагнитного излучения в полупроводниках приводит к росту их электрической проводимости. Это явление, называемое внутренним фотоэффектом, используется при изготовлении фоторезисторов, сопротивление которых может уменьшаться в сотни и тысячи раз при их освещении. Основной областью применения фоторезисторов является автоматика, где они в некоторых случаях с успехом заменяют вакуумные фотоэлементы. Фоторезисторы незаменимы в автоматах для сортировки, счета и контроля качества готовой продукции. Они используются в полиграфической промышленности при обнаружении обрывов бумажной ленты и контроле за количеством листов. Фоторезисторы применяются для измерения высоких температур, для регулировки температуры в различных технологических процессах. Контроль за задымленностью различных объектов, автоматические выключатели уличного освещения и турникеты в метрополитене - вот далеко не полный перечень областей применения фоторезисторов.

Солнечная батарея (или батарея солнечных элементов) является полупроводниковым источником тока, непосредственно преобразующим энергию солнечного излучения в электрическую. Действие солнечных элементов основано на использовании явления внутреннего фотоэффекта в области p-n перехода двух полупроводников (рис. 32б). Под действием света по обе стороны от p-n перехода растёт концентрация электронов и дырок. При этом электрическое поле в области p-n перехода перемещает электроны из полупроводника p-типа в полупроводник n-типа, а дырки – в противоположном направлении. В результате, увеличивается разность потенциалов между этими полупроводниками, причём полупроводник p-типа становится ещё более электроположительным, и в цепи появляется ток. ЭДС, возникающую в области p-n перехода под действием света, называют фотоЭДС.

Чаще всего материалом для солнечных элементов служит Si или GaAs. Солнечные батареи обычно выполняют в виде плоской панели из солнечных элементов, защищённых прозрачными покрытиями. КПД солнечных элементов может достигать 20%. Как известно, плотность потока солнечного излучения в безоблачный день вблизи экватора составляет около 1000 Вт/м2. Поэтому мощность тока, которую можно получить с помощью солнечной батареи, площадь панелей которой равна 1 м2, не превышает 200 Вт. Чтобы солнечная батарея имела мощность, достаточную для снабжения электроэнергией семьи из нескольких человек, площадь её панелей должна составлять 10-20 м2. Солнечные батареи находят своё применение не только на Земле, но и в космосе, где служат основным источником энергии для аппаратуры и системы жизнеобеспечения спутников и межпланетных кораблей.

Б рисовать не нужно