Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры для АСОИ, 2012, 91 вопрос (Мельников).doc
Скачиваний:
184
Добавлен:
15.06.2014
Размер:
8.05 Mб
Скачать

6. Стабилитроны

Стабилитрон — полупроводниковый диод, предназначенный для поддержания напряжения источника питания на заданном уровне. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию легирующих элементов (примесей). Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).

У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, примерно равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения стабилизации является одним из способов снижения его зависимости от температуры.

Режим электрического пробоя p-n-перехода находит практическое применение для стабилизации напряжения. Такие приборы называются стабилитронами. Для изготовления стабилитронов используется кремний. Вольт-амперная характеристика стабилитрона приведена на рисунке.

Для работы используется обратная ветвь, где значительному изменению тока соответствует малое изменение напряжения. Точка А соответствует устойчивому пробою и определяет величину минимального тока Imin. После точки А ток резко возрастает и допустимая величина его Imax ограничивается лишь мощностью рассеяния P max:

где – напряжение стабилизации.

Рабочую точку на характеристике выбирают посередине рабочего участка, т.е.

Рабочее напряжение стабилитрона, являющееся напряжением пробоя p-n-перехода, зависит от концентрации примесей и лежит в пределах 4 – 200 В.

Схема простейшего стабилизатора с использованием стабилитрона показана на рисунке. Резистор r является гасящим и одновременно задаёт рабочую точку. Величина сопротивления r должна быть значительно больше величины дифференциального сопротивления стабилитрона.

При изменении температуры напряжение стабилизации может изменяться.

Параметры стабилитронов:

Напряжение стабилизации Uст. ном – падение напряжения на стабилитроне

при номинальном значении тока Iст. Минимальный и максимальный ток стабилизации Iст min, Iст max. Дифференциальное сопротивление . Статическое сопротивление в рабочей точке . Коэффициент качества стабилитрона . Температурный

коэффициент напряжения (ТКН) стабилизации – отношение относительного изменения напряжения стабилизации к изменению температуры

.

7. Варикапы, туннельные и обращенные диоды.

Варикапами называются полупроводниковые диоды, в которых используется зависимость барьерной ёмкости p-n-перехода от обратного напряжения.

Варикапы применяют в устройствах управления частотой колебательного контура, в параметрических схемах усиления, деления и умножения частоты, в схемах частотной модуляции, управляемых фазовращателях и др.

Вольт-фарадная характеристика варикапа:

Схема замещения:

Варикапы в основном используются на высоких и сверхвысоких частотах, поэтому важную роль играет сопротивление потерь rб. Для его уменьшения необходимо выбирать материал с малым удельным сопротивлением. Используются кремний, германий.

При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n-перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может

Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт-амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении.

Концентрация примесей в p- и n- областях выбирается порядка , следствием чего является малая толщина перехода (порядка 0,01 мкм). Локальные уровни примесей образуют в вырожденных полупроводниках сплошную зону. Уровни Ферми располагаются соответственно в валентной зоне p-области и в зоне проводимости n-области. В состоянии термодинамического равновесия зона проводимости n-полупроводника и валентная зона p-полупроводника перекрываются на величину .

Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии.

Вольт-амперная характеристика туннельного диода:

Таким образом, туннельный диод обладает отрицательным дифференциальным сопротивлением в некотором диапазоне прямых напряжений, что позволяет использовать его для генерации и усиления колебаний, а также в переключающих схемах.

Разновидностью туннельных диодов являются обращенные диоды, изготовляемые на основе полупроводника с концентрациями примесей в р- и n - областях диода, меньших, чем в туннельных, но больших, чем в обычных выпрямительных диодах.

Вольт-амперная характеристика обращенного диода представлена:

Прямая ветвь ВАХ обращенного диода аналогична прямой ветви обычного выпрямительного диода, а обратная ветвь аналогична обратной ветви ВАХ туннельного диода, т.к. при обратных напряжениях происходит туннельный переход электронов из валентной зоны р-области в зону проводимости n-области и при малых обратных напряжениях (десятки милливольт) обратные токи оказываются большими. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но проводящее направление в них соответствует обратному включению, а запирающее – прямому включению.