Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
40
Добавлен:
20.06.2014
Размер:
1.02 Mб
Скачать

60 J.N. Delahay and S.T. Sauer

In fractures at the junction of the middle and distal third of the humerus, the radial nerve is vulnerable to injury. Radial nerve function must be documented. Fortunately, most of these nerve injuries are neuropraxias; hence, excellent recovery can be expected. In more-comminuted fractures of the humeral shaft, open reduction and internal fixation are currently popular. The use of plates versus intramedullary locked rods is a current controversy.

Elbow and Forearm

Supracondylar Fractures in Children

This notorious fracture, the supracondylar fracture in children, presents a “minefield” for the orthopedic surgeon. In early stages, one must be vigilant in evaluating the child for vascular compromise, specifically compartment syndrome. Later, these can result in a Volkmann’s contracture. Angular deformity resulting from growth plate damage occasionally may be seen. In an effort to minimize these disastrous complications, aggressive early closed reduction and percutaneous pinning currently form the treatment of choice. Alternatives such as open reduction or overhead traction are, nevertheless, available.

Closed reduction is best accomplished in the operating room with adequate anesthesia. Considering the risk of vascular compromise, these fractures should be treated emergently. With the C-arm (fluoroscopy) in place, a closed reduction is performed and two Kirschner wires are driven across the fracture site percutaneously. A plaster splint is then used to hold the elbow initially, with cast application in several days. In 3 weeks, the pins are generally removed, and in 3 more weeks the cast is discontinued. It is normal for there to be a good deal of stiffness after such an event occurs in a child. The key to postoperative management is to emphatically tell the parents not to make the child move the elbow. In other words, if the child is left alone, in a reasonably short time a good deal of motion is automatically regained. There should be no passive manipulation of the child’s elbow. Because of the cartilaginous growth centers (physes, epiphyses, and apophyses) around the child’s elbow, diagnosis may be difficult. The inexperienced practitioner may benefit from review of comparison views of the normal elbow.

Distal Humeral Fractures in Adults

These intraarticular fractures of the distal humerus are difficult to treat and are often followed by stiffness and arthritis. Therefore, an early open reduction and anatomic restoration of the articular surfaces with rigid fixation of the fragments to the shaft of the humerus give the best result. The ulnar nerve, because of its location, is at risk and generally has to be moved from the cubital tunnel and transported anteriorly. The goal of treatment

2. Skeletal Trauma

61

is to restore function by an anatomic restoration of the fragments and initiation of early motion. It is generally agreed that if a traumatized elbow is immobilized for 3 weeks or more, a poor result will follow. Functional elbow motion is approximately 30 to 100 degrees; this will allow the hand to reach the mouth (Fig. 2-11).

Dislocation of the Elbow

Most elbow dislocations occur in a fall on the extremity, and the ulna is pushed posterior to the humerus. Reduction of a posterior elbow dislocation is easily accomplished for the most part by closed means using manual traction and manipulation. Intravenous sedation and augmentation with local anesthetic injected into the joint is usually adequate for manipulation. X-rays must confirm the reduction. Short-term immobilization for comfort is all that is required. Following this, active flexion and extension are essential to regain motion. Any elbow trauma in the adult should be accompanied by warning the patient of the likelihood that a few degrees of full extension are usually lost but that this loss will present no functional disability.

FIGURE 2-11. Distal humerus fracture.

62 J.N. Delahay and S.T. Sauer

Two specific forearm/elbow injuries must be mentioned. The Monteggia fracture-dislocation, a fracture of the proximal ulna with a dislocation of the radial head, requires not only treatment of the ulna but also reduction of the radial head. Although closed reduction is possible in children, in adults the ulna is almost always treated by open reduction and internal fixation with a plate and screws. Radial head position must be assured with X-rays (Fig. 2-12). The Galeazzi fracture-dislocation includes a fracture of the more-distal radius with a dislocation of the distal radioulnar joint. This radial fracture is treated by open reduction and internal fixation with plate and screws. The ulnar dislocation usually requires positioning of the forearm in supination to achieve reduction (Fig. 2-13).

Fracture of Both Bones of the Forearm

In children, fracture of both forearm bones is almost always treated nonsurgically by closed reduction and immobilization in a long arm cast. Anatomic reduction is not necessary because of the excellent remodeling potential in children. Six to 8 weeks of immobilization is necessary in a child. In adults, because of the concern over loss of pronation and supination and delayed union, operative treatment consisting of open reduction of both the radius and the ulna, done through two separate incisions and fixation with plates, is generally employed.

Fractures of the Olecranon

The triceps muscle inserts into the olecranon process, providing an extensor for the elbow joint. Although nondisplaced fractures of the olecranon may be treated closed, displaced fractures are routinely opened and fixed by means of a tension-band technique. Early motion is allowed after such

FIGURE 2-12. The Monteggia fracture-dislocation (type 1, anterior).

2. Skeletal Trauma

63

FIGURE 2-13. The Galeazzi fracture.

a procedure, but heavy work, of course, must await bony consolidation, which takes at least 6 weeks (Fig. 2-14).

Fracture of the Head of the Radius (Elbow)

This common intraarticular injury usually occurs from a fall onto the outstretched hand. If displacement is small, conservative treatment provides a good result. This treatment consists of immobilization for comfort for a short time, 3 to 5 days, then institution of several 10-minute periods of active motion consisting of flexion, extension, supination, and pronation. Each exercise may be followed by splint and sling immobilization for comfort in the first 7 to 10 days. The patient must be cautioned against passive motion, which may cause bleeding and stiffness. If more than one-

FIGURE 2-14. Olecranon fracture.

2. Skeletal Trauma

65

third of the head of the radius articular surface is involved, and more than a 3-mm depression or significant angulation occurs, open reduction and internal fixation with a small screw are occasionally performed. In an isolated, comminuted, displaced fracture, removal of the head of the radius can give a good result, with or without a radial head replacement.

Wrists and Hands

Wrist Fractures (Distal Radius)

Wrist fractures in children are commonly of the torus or buckle type. Reduction is rarely necessary; cast immobilization for 4 to 6 weeks, depending on the age of the child, is suggested. Another frequent fracture, usually occurring in older children, traverses the open and actively growing physis. Typically, this is a Salter II fracture (see Fig. 2-3). Reduction by closed means can be readily accomplished, and a cast is applied until healing has been accomplished. Fractures of both bones of the distal forearm, within an inch of the distal end of the bone, are fairly common. Closed reduction under local hematoma block anesthesia with intravenous sedatives works well. Perfect reduction is not needed because of the excellent remodeling potential of the child.

In the adult, the most frequent fracture about the wrist is the classic Colles fracture. The description in 1814 by Abraham Colles of Ireland predated the discovery of X-rays. This is a fracture of the distal radius usually seen in elderly patients, in whom osteoporosis is common. The three classic deformities are (1) dorsal displacement of the distal fragment,

(2) volar angulation, and (3) radial shortening. It is the latter that presents the most significant functional problem if not corrected. Although, traditionally, closed reduction and cast application was the treatment of choice, and is frequently still employed, both patients and their orthopedic surgeons in many cases have not been willing to accept less than perfect results. Therefore, surgical repair has become a popular option. Because these fractures usually occur with a fall onto the outstretched hand, comminution, in addition to these three classic deformities, is frequently encountered. A particular type of comminution is the so-called die-punch injury in which the lunate impresses a fragment of distal radius proximally, which requires an open reduction and fixation. The means of fixation range from the use of multiple pins to an external fixator, which consists of two pins in a metacarpal and two pins in the radius with an outside adjustable bar. This device holds the fragments out to length. Actual open reduction and internal fixation of the fragments, using a buttress plate after elevation of the depressed fragment, and the application of bone graft may also be employed. Because many older adults request the best possible wrist they can get, such procedures may be necessary. It is, however, quite usual for people in their later seventies and eighties to prefer not to have an extensive

66 J.N. Delahay and S.T. Sauer

operation. They are usually satisfied with a simple closed reduction and cast immobilization. Even though the cosmetic result may not be perfect, the functional result is quite good.

Scaphoid (Navicular) Fractures

Vigorous young adults are vulnerable to scaphoid injury. This fracture, like so many others, results from a fall onto the outstretched hand. Any patient who gives this history and has tenderness in the so-called anatomic snuffbox of the wrist should be considered to have a scaphoid fracture and treated in a thumb spica cast. The anatomic snuffbox is the area just distal to the radial styloid and bordered by the extensor pollicis longus dorsally and by the extensor pollicis brevis and abductor pollicis longus volarly. X-rays of the wrist taken soon after the injury frequently fail to reveal a fractured scaphoid. Because of the danger of nonunion at the site, it is generally accepted to treat such a patient with a thumb spica cast and remove this cast 10 to 14 days later. At that time, clinical examination and new radiographs reveal whether there is a fracture. A bone scan, computed tomography, or magnetic resonance imaging occasionally may be needed. Patients often feel that they have had a sprained wrist, but a true “sprained” wrist is very rare. Because of the risk of nonunion and avascular necrosis of the proximal pole of the scaphoid, open reduction is recommended for displaced fractures. Other carpal bones are usually treated simply by immobilization in a cast and generally do well.

Lunate dislocation and perilunate dislocation are uncommon injuries and require significant trauma. Aggressive operative treatment is usually required to produce a satisfactory result.

Phalangeal Fractures

It is critical to remember to evaluate the patient for rotational malalignment. This deformity is frequently subtle unless the fingers are examined in the flexed position. Once reduced, the fracture should be immobilized in the position of function (flexed), never in full extension. Fractures involving articular surfaces must be openly reduced and internally fixed if any displacement is present. Otherwise, severe stiffness and arthritis can result.

Gamekeeper’s Thumb

This common and frequently missed injury is a tear of the ulnar collateral ligament of the metacarpophalangeal joint at the base of the thumb. Typically, it occurs during a fall as a valgus stress is applied to the thumb. This stress frequently follows falling with a ski pole in the hand. The result, if overlooked, can be significant instability and impairment in use of the thumb for pinching. Although partial injuries are treated with a thumb spica cast, complete injuries are best treated by surgical repair.

2. Skeletal Trauma

67

Fractures and Dislocations by Region: The Spine

Injuries to the spine are best understood by considering the anatomy of the spine. For descriptive purposes, the spinal column is divided into anterior, middle, and posterior columns. The anterior column includes the anterior half of the body of the vertebrae and the anterior longitudinal ligament. The middle column includes the posterior half of the body and the posterior longitudinal ligament. The posterior column includes the pedicles and the lamina (Fig. 2-15). If only one column is involved, the

 

 

 

A

 

B

C

FIGURE 2-15. Schematic diagrams of the components of the three columns of the thoracolumbar spine. (A) Anterior column: anterior longitudinal ligament, anterior half of the body, and anterior half of the disk. (B) Middle column: posterior longitudinal ligament, posterior half of the body, and posterior half of the disk.

(C) Posterior column: neural arch, ligamentum flavum, facet joint capsules, and the interspinous ligaments. (From Bucholz RW, Gill K. Classification of injuries of the thoracolumbar spine. Orthop Clin North Am 1986;17(1):70. Reprinted by permission.)

68 J.N. Delahay and S.T. Sauer

injury usually can be considered stable and is often treated conservatively. If two or more columns are involved, then the injury is considered unstable. Injury includes bony as well as ligamentous structures. Another important observation is for the presence of neurologic compromise. X-rays will reveal much of the bony damage of the spine, and computed tomography (CT) scan can reveal bony fragments in the spinal canal. It must be remembered that the spinal cord ends at the upper border of the second lumbar vertebra, and below it only the cauda equina inhabits the spinal canal.

Magnetic resonance imaging is best used to study additional soft tissue injury.

Simple compression fractures of the anterior portion of the body of the vertebra are usually considered stable if they are less than 50% of the height of the vertebral body. If they are more than 50%, it is believed that the next column (the middle) is involved, which makes the fractures unstable. Similarly, burst fractures characterized by fragments of the vertebral body being displaced posteriorly may well encroach on the spinal canal. A CT scan will show the extent of encroachment. Although patients without neurologic symptoms may be treated by prolonged bed rest, modern treatment of spinal trauma with positive neurologic findings generally consists of removal of the bony fragments from the neural elements and stabilization by either posterior or anterior instrumentation. Fractures of the facets and dislocations of the facets are also encountered. Generally speaking, these are reduced and, if unstable, fixed. External fixation by means of casts and braces is not very efficient in immobilizing the spine. Halo fixation can be used, and internal fixation can be an efficient method of definitive treatment. The first and second cervical vertebrae have particular anatomic structures. Certain specific types of injuries, such as the Jefferson fracture, the Hangman’s fracture, and the various odontoid fractures (Fig. 2-16), involve the C1–C2 complex. Aggressive immobilization is required for satisfactory results. Treatment may be closed with a halo application or open employing various techniques.

The Jefferson Fracture

The Hangman’s Fracture

Odontoid Fractures

 

 

 

Type

1

 

 

 

 

 

 

 

2

 

 

 

 

Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type 3

A

 

B

 

C

 

 

 

 

 

 

 

 

 

 

FIGURE 2-16. Fractures of the atlas and axis. (A) The Jefferson fracture. (B) The hangman’s fracture. (C) Odontoid fractures.

2. Skeletal Trauma

69

Fractures and Dislocations by Region: Pelvis

The unique anatomy of the pelvis presents a challenge in management when it is disrupted. The pelvis is a ring structure of three bones: two innominate bones and, posteriorly, the sacrum. They are joined by dense, strong ligamentous structures. Each innominate bone is formed from three bones: an ilium, an ischium, and the pubis, together circumscribing the acetabulum. The juncture between the two innominate bones anteriorly is called the symphysis pubis, and posteriorly there are two sacroiliac joints surrounded by dense sacroiliac ligaments.

Two completely different types of pelvic fractures exist. In elderly and osteoporotic patients, minor trauma, such as a minor fall, may cause a crack of the ischium or pubis. As this may be the only fracture, therefore the fracture is considered stable. Bed rest for a few days or until the pain eases up, followed by mobilization, will allow the patient to become asymptomatic and fully functional in a matter of 6 to 8 weeks.

The other type of pelvic fracture is one following a severe traumatic force. In these injuries, blood loss is often excessive and should be anticipated. Great care in evaluating the patient is essential. A rectal and vaginal examination is required to assure that the fracture is not open through those soft tissue structures. An open fracture of the pelvis with injury to the bowel and the urogenital system still carries with it a mortality rate of 50%. Early treatment in these severe life-threatening pelvic injuries usually mandates the application of an external fixator: three pins in each ilium, with a device in front to hold the fragments together; this procedure seems to be the most effective way of stemming the devastating bleeding. Although embolization has its place, it is not always effective. If the bowel is involved, a diverting colostomy is mandatory to prevent fatal sepsis. Thorough exploration, cleaning, and debridement must be done. Then, open reduction and internal fixation, often using pelvic reconstruction plates, may become necessary, best performed by a surgeon familiar with the operative treatment of pelvic fractures. Fractures through the acetabulum causing articular disruption and, hence, a fracture-dislocation of the hip, are best managed by surgical acetabular reconstruction. With the onset of late osteoarthritis, total hip replacement might be necessary.

Fractures and Dislocations by Region:

The Lower Extremity

Femur

Femoral Neck Fractures

The neck of the femur is situated within the capsule of the hip joint, which makes fractures of the neck of the femur subject to two problems with regard to the aftermath of trauma: avascular necrosis and nonunion. The

Соседние файлы в папке Essentials of Orthopedic Surgery, third edition