Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Селекция.doc
Скачиваний:
69
Добавлен:
07.02.2015
Размер:
172.54 Кб
Скачать

Генетические основы селекции

 

1. Структура современной селекции

Селекция(от лат.selectio,seligere– отбор) – это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция – это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки.

В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По образному выражению Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории.

Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

-     Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

-     Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

-     Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

-     Повышение потребительских качеств продукции.

-     Уменьшение доли побочных продуктов и их комплексная переработка.

-     Уменьшение доли потерь от вредителей и болезней.

 

История современной селекции

Учение о современной селекции было создано нашим выдающимся соотечественником – агрономом, ботаником, географом, путешественником, всемирно признанным авторитетом в области генетики, селекции, растениеводства, иммунитета растений, крупным организатором сельскохозяйственной и биологической науки в нашей стране – Николаем Ивановичем Вавиловым (1887–1943). Многие хозяйственно-полезные признаки являются генотипически сложными, обусловленными совместным действием многих генов и генных комплексов. Необходимо выявить эти гены, установить характер взаимодействия между ними, иначе селекция может вестись вслепую. Поэтому Н.И. Вавилов утверждал, что именно генетика является теоретической основой селекции.

Н.И. Вавилов выделил следующие разделы селекции:

1) учение об исходном сортовом, видовом и родовом потенциалах;

2) учение о наследственной изменчивости (закономер­ности в изменчивости, учение о мутациях);

3) учение о роли среды в выявлении сортовых призна­ков (влияние отдельных факторов среды,  учение о стадиях в развитии растений применитель­но к селекции);

4) теория гибридизации как в пределах близких форм, так и отдаленных видов;

5) теория селекционного процесса  (самоопылители, перекрестноопылители, вегетативно и апогамно раз­множающиеся растения);

6) учение об основных направлениях в селекционной работе, таких, как селекция на иммунитет, на физиологические свойства (холодостой­кость, засухоустойчивость, фотопериодизм), селекция на технические качества, химический состав;

7) частная селекция растений, животных и микроорганизмов.

 Учение Н.И. Вавилова о центрах происхождения культурных растений

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр – включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Не менее одной четверти населе­ния земного шара до сих пор живет в тропичес­кой Азии. В прошлом относительная населен­ность этой территории была еще более значи­тельной. Из этого центра ведет начало около одной трети возделываемых в настоящее время растений. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский  центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Япо­нию и большую часть о. Тайвань. На этой терри­тории живет примерно также около одной четверти населения Земли. Около 20% всей мировой культурной флоры ведет начало из Восточной Азии. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора кото­рого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказскийсо множеством оригинальных видов пшеницы, ржи и плодовых. По пшенице и ржи, как выяснено сравнительными исследова­ниями, это наиболее важный мировой очаг их видового происхождения;

б) Переднеазиатский,включающий Малую Азию, Внутреннюю Сирию и Палестину, Транс­иорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркеста­ном;

в) Северо-западноиндийский,включающий помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира также Белуджистан и Южный Афганистан.

Около 15% всей мировой культурной флоры ведет начало с этой территории. В исключительном видовом разно­образии здесь сосредоточены дикие родичи пше­ницы, ржи и различных европейских плодовых. До сих пор здесь можно проследить для многих видов непрерывный ряд от культурных до диких форм, т. е. установить сохранившиеся связи диких форм с культурными.

4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Этот замечательный гео­графический центр, характеризующийся в прош­лом величайшими древнейшими цивилизациями, дал начало приблизительно около 10% видов куль­турных растений. Среди них такие, как твердые пшеницы, капуста, свекла, морковь, лен, виноград, маслина, множество других овощных и кормовых культур.

5. Абиссинский центр. Общее число видов культурных растений, связанных по своему происхождению с Абисси­нией, не превышает 4% мировой культурной флоры. Абиссиния харак­теризуется рядом эндемичных видов и даже родов культурных растений. Среди них такие, как кофейное дерево, арбуз, хлебный злак тэфф (Eragrostis abyssinica), своеобразное масличное растение нуг(Guizolia ahyssinica),особый вид банана.

В пределах Нового Света установлена порази­тельно строгая локализация двух центров видо­образования главнейших культурных растений.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику. В этом центре можно выделить три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Из Центральноамериканского центра ведет начало около 8% различных возделываемых рас­тений, таких, как кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский  центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

 Как видно из перечня географических цент­ров, начальное введение в культуру подавля­ющего числа возделываемых растений связано не только с флористическими областями, отли­чающимися богатой флорой, но и с древнейшими цивилизациями. Лишь сравнительно немногие растения введены в прошлом в культуру из дикой флоры вне перечисленных основных географи­ческих центров. Семь указанных географичес­ких центров соответствуют древнейшим земле­дельческим культурам. Южноазиатский тропический центр связан с высокой древнеиндийской и индокитайской куль­турой. Новейшие раскопки показали глубокую древность этой культуры, синхронной передне-азиатской. Восточноазиатский центр связан с древней китайской культурой, а Юго-западно-азиатский — с древней культурой Ирана, Малой Азии, Сирии, Палестины и Ассиро-Вавилонии. Средиземноморье за много тысячелетий до нашей эры сосредоточило этрусскую, эллинскую и египетскую культуры. Своеобразная абиссин­ская культура имеет глубокие корни, вероятно совпадающие по времени с древней египетской культурой. В пределах Нового Света Цент­рально-американский центр связан с великой культурой майя, достигшей до Колумба огром­ных успехов в науке и искусстве. Андийский центр в Южной Америке сочетается в развитии с замечательной доинкской и инкской цивилиза­циями.

Н.И. Вавилов выделил группу вторичных культур, которые произошли от сорняков: рожь, овес и др. Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм». Н.И. Вавилов различал следующие группы исходных сортов: местные сорта, иноземные и инорайонные сорта. При разработке теории интродукции (внедрения) инорайонных и иноземных сортов «необходимо отличать первичные очаги формообразования от вторичных». Например, в Испании обнаружено «исключительно большое число разновидностей и видов пшениц», однако это объясняется «привлечением сюда многих видов из разных очагов». Н.И. Вавилов придавал большое значение новым гибридным формам. Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциаломисходного материала.

 Развитие учения Н.И. Вавилова о центрах происхождения культурных растений.

К сожалению, многие идеи Н.И. Вавилова не были в должной мере оценены современниками. Лишь во второй половине XXвека крупные центры по сохранению генофонда культурных растений и их диких сородичей были созданы на Филиппинах, в Мексике, в Колумбии и других зарубежных странах.

Во второй половине XX в. появились новые данные о распределении культурных растений. С учетом этих данных академик П.М. Жуковский развил учение Н.И. Вавилова о центрах происхождения культурных растений. Он создал теорию мегацентров (генетических центров, или генцентров), объединяющих первичные и вторичные очаги происхождения культурных растений, а также их некоторых дикорастущих сородичей. В своей книге «Мировой генофонд растений для селекции» (1970) П.М. Жуковский выделил 12 мегацентров: Китайско-Японский, Индонезийско-индокитайский, Австралийский, Индостанский, Среднеазиатский, Переднеазиатский, Средиземноморский, Африканский, Европейско-сибирский, Среднеамериканский, Южноамериканский, Североамериканский. Перечисленные мегацентры занимают обширные географические регионы (например, к Африканскому центру отнесена вся территория Африки к югу от Сахары). В то же время, П.М. Жуковский выделил 102 микрогенцентра, в которых обнаружены отдельные формы растений. Например, родиной душистого горошка – популярного декоративного растения – является о. Сицилия; из некоторых районов Грузии происходят уникальные формы пшениц, в частности, пшеница Зандури, представляющая собой надвидовой комплекс, устойчивый к многим грибковым заболеваниям (кроме того, среди этих пшениц обнаружены формы с цитоплазматической мужской стерильностью).

Закон гомологических рядов

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов(1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака. Например, в пределах разных родов злаков существует параллельная изменчивость окраски зерна:

 

Варианты

окраски зерна

Роды злаков

Рожь

Пшеница

Ячмень

Овес

Просо

Белое

есть

есть

есть

есть

есть

Красное

есть

есть

есть

нет

нет

Зеленое

есть

есть

есть

есть

есть

Черное

есть

есть

есть

нет

нет

Фиолетовое

есть

есть

есть

нет

нет

 

Теоретическое и практическое значение закона гомологических рядов:

-     Н.И. Вавилов четко разграничил внутривидовую и межвидовую изменчивость. При этом вид рассматривался как целостная, исторически сложившаяся система.

-     Н.И. Вавилов показал, что внутривидовая изменчивость небезгранична и подчиняется определенным закономерностям.

-     Закон гомологических рядов является руководством для селекционеров, позволяя предсказать возможные варианты признаков.

Н. И. Вавилов впервые осуществил целенаправленный поиск редких или мутантных аллелей в природных популяциях и популяциях культурных растений. В наше время продолжается поиск мутантных аллелей для повышения продуктивности штаммов, сортов и пород.

Выявление уровня биологического разнообразия и его сохранение

Для отыскания центров разнообразия и богатства растительных форм Н.И. Вавилов многочисленные экспедиции, которые за 1922…1933 гг. побывали в 60 странах мира, а также в 140 районах нашей страны.

Важно подчеркнуть, что поиски культур­ных растений и их диких сородичей шли не вслепую, как в большин­стве стран, в том числе и в США, а опирались на стройную строгую теорию центров происхожде­ния культурных растений, разработанную Н.И. Вавиловым. Если до него ботаники-географы искали «вообще» родину пшеницы, то Вавилов искал центры происхождения отдельных видов, групп видов пшеницы в различных областях земного шара. При этом особо важно было выявить области естественного распространения (ареалы) разновидностей данного вида и определить центр наибольшего разнообразия его форм (ботанико-географический метод). Чтобы установить географическое распределение разновидностей и рас культурных растений и их диких родичей, Н.И. Вавилов изучал очаги древнейшей земледельческой культуры, начало которой он видел в горных районах Эфиопии, Передней и Средней Азии, Китая, Индии, в Андах Южной Америки, а не в широких долинах крупных рек – Нила, Ганга, Тигра и Евфрата, как утверждали ученые прежде.

В результате экспедиций был собран ценный фонд мировых растительных ресурсов, насчитывающий свыше 250000 образцов. Подобная коллекция была создана и в США, однако она значительно уступала вавиловской коллекции и по числу образцов, и по видовому составу.

Коллекционные образцы, собранные под руководством Н.И. Вавилова, хранились в Ленинграде во Всесоюзном институте растениеводства (ВИРе), созданном Н.И. Вавиловым в 1930 г. на основе Всесоюзного института прикладной ботаники и новых культур (ранее – Отдела прикладной ботаники и селекции, еще ранее – Бюро по прикладной ботанике). В годы Великой Отечественной войны во время блокады Ленинграда сотрудники ВИРа несли круглосуточное дежурство при коллекции семян зерновых культур. Многие сотрудники ВИРа умерли голодной смертью, но бесценное видовое и сортовое богатство, из которого и поныне селекционеры всего мира черпают материал для создания новых сортов и гибридов, было сохранено.

Во второй половине XXстолетия были организованы новые экспедиции по сбору образцов для пополнения коллекции ВИРа; в настоящее время эта коллекция насчитывает до 300 тысяч образцов растений, принадлежащим к 1740 видам.

Для хранения исходного материала в живом виде используются разнообразные насаждения: коллекционные питомники, коллекционно-маточные, маточные и производственные плантации. Для сохранения коллекционных образцов используются самые разнообразные методы: хранение семян с периодическим пересевом, хранение замороженных образцов (черенков, почек), поддержание тканево-клеточных культур. В 1976 г. на Кубани было построено Национальное хранилище семян для генофонда ВИРа, вместимостью 400 тысяч образцов. В этом хранилище семена хранятся при строго определенной температуре, позволяющей сохранить всхожесть и предотвратить накопление мутаций, в т.ч. при температуре жидкого азота (–196 °С).

Планомерное изучение мировых растительных ресурсов важнейших культурных растений коренным образом изменило представление о сорто­вом и видовом составе даже таких хорошо изученных культур, как пше­ница, рожь, кукуруза, хлопчатник, горох, лен и картофель. Среди видов и множества разновидностей этих культурных растений, привезенных из экспедиций, почти половина оказались новыми, еще не известными науке. Собран­ная богатейшая коллекция тщательно изучается с применением самых современных методов селекции, генетики, биотехнологии, а также с помощью географических посевов.

 Снижение генетического разнообразия на популяционном уровне – знамение нашего времени

Многие современные сорта растений (зернобобовых культур, кофейного дерева и др.) ведут начало от немногих особей-основателей. На грани вымирания находятся сотни пород домашних животных. Например, развитие промышленного птицеводства привело к резкому сокращению породного состава кур во всем мире: наибольшее распространение получили всего лишь 4…6 из известных 600 пород и разновидностей. Та же ситуация характерна для других сельскохозяйственных видов. Значительную роль в процессе снижения уровня разнообразия играет нерациональное ведение хозяйства, игнорирующее эволюционно сложившуюся системную организацию как природных, так и сельскохозяйственных популяций, их естественную подразделенность на генетически отличающиеся субпопуляции. Идеи Н.И. Вавилова о необходимости выявления и сохранения разнообразия были развиты в работах А.С. Серебровского, С.С. Четверикова и других отечественных ученых. Методы селекции, направленные на сохранение биологического разнообразия, будут рассмотрены ниже.

В настоящее время исходным материалом для селекции признаются:

-     Сорта и породы, возделываемые и разводимые в настоящее время.

-     Сорта и породы, вышедшие из производства, но представляющие большую генетическую и селекционную ценность по отдельным параметрам.

-     Местные сорта и аборигенные породы.

-     Дикие сородичи культурных растений и домашних животных: виды, подвиды, экотипы, разновидности, формы.

-     Дикие виды растений и животных, перспективные для введения в культуру и доместикации. Известно, что в настоящее время культивируется всего лишь 150 видов сельскохозяйственных растений и 20 видов домашних животных. Таким образом, огромнейший видовой потенциал диких видов остается неиспользованным.

-     Экспериментально созданные генетические линии, искусственно полученные гибриды и мутанты.

В наше время общепризнанно, что в качестве исходного материала должен использоваться как местный, так и инорайонный исходный материал. Исходный материал должен быть достаточно разнообразен: чем больше его разнообразие, тем больше возможность выбора. В то же время, исходный материал должен быть максимально приближен к идеальному образу (модели) результата селекции – сорта, породы, штамма (см. ниже). В настоящее время продолжается поиск мутантных аллелей для повышения продуктивности сортов, пород и штаммов.

 

Индуцированный мутагенез.

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза– искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1(первое мутантное поколение). ВM1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2(втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят осоматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

-     получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

-     восстановление плодовитости у межвидовых гибридов;

-     перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.