Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билеты физика готовые.docx
Скачиваний:
10
Добавлен:
20.01.2021
Размер:
1.62 Mб
Скачать

Билет №4

  1. Энергия электромагнитного поля.

Энергия электромагнитного поля - количественная характеристика энергии электромагнитных волн. Величина энергии электромагнитного поля переменного электрического тока может быть установлена на основании измерения работы, производимой электромагнитным полем (силой Лоренца) над носителями электрических зарядов.

Из определения напряжённости электрического поля Е и индукции магнитного поля Вследует выражение для работы р, совершаемой над движущимися зарядами в единичном объёме в единицу времени:

где   - вектор плотности электрического тока; uα - скорость распределённого пространственного заряда сорта α, имеющего плотность ρα; суммирование производится по всем сортам пространственных зарядов (электронные заряды в металлах и вакууме, ионные заряды в газах и электролитах; связанные пространственные заряды, входящие в состав нейтральных молекул диэлектриков и магнетиков, и т. д.), участвующих во взаимодействии с электромагнитн. полем.

  1. Полосы равной толщины и равного наклона. Кольца Ньютона.

Полосы равной толщина.

Допустим, что толщина пластинки не постоянной (∼b, n = const).

Тогда во всех тех местах пластинки, где толщина b, а следовательно, и разность хода Δ одинаковы, наблюдается один и тот же результат интерференции. Это означает, что вдоль какой-либо темной или светлой интерференционной полосы, образующейся на поверхности, толщина этой пластинки одна и та же.

  • Полосы равной толщины локализованы на поверхности пластинки. При наблюдении в белом свете полосы будут окрашены так, что поверхность содержит все цвета радуги. Пример полос равной толщины: нефтяные пятна, мыльные пленки и т.д.

3. Кольца Ньютона.

Кольца Ньютона - пример полос равной, толщины. Они наблюдаются при отражении света.от соприкасающихся друг с другом плоско параллельной толстой стеклянной пластинки и плоско выпуклой линзы с большим радиусом кривизны. Роль тонкой пленки переменной толщины b, от поверхности которой отражаются когерентные волны, играет зазор между пластинкой и линзой. Пусть показатель преломлений зазора n, толщина в точке Еравна b. Параллельный пучок света падает       нормально (i1 = 0°) на плоскую поверхность ВСлинзы и отражается от верхней и нижней поверхности зазора (от т. Е и F ).

Билет №5

  1. Объемная, поверхностная и линейная плотности зарядов.

  1. Тормозное рентгеновское излучение.

Тормозное рентгеновское излучение – это жесткое электромагнитное излучение, возникающее в результате торможения ускоренных электронов в кулоновском поле ядер атомов анода. Электрон, ускоренный разностью потенциалов между катодом и анодом, подлетает к аноду и при попадании в кулоновское поле ядер атомов анода начинает двигаться по криволинейной траектории, теряя свою энергию. Большая часть энергии расходуется на нагрев анода и значительно меньше выделяется в виде жесткого электромагнитного излучения – тормозного рентгеновского излучения (ТРИ).

невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы.

проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.