Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
педиатрия по вопросам.docx
Скачиваний:
122
Добавлен:
21.06.2023
Размер:
17.63 Mб
Скачать

1. Роль фосфора и кальция в организме ребенка. Особенности их обмена, регуляция. Суточная потребность детей раннего возраста в кальции, фосфоре, витамине д. Факторы, предрасполагающие к рахиту.

Адекватный уровень витамина D определяется как концентрация 25(ОН)D более 30 нг/мл (75 нмоль/л), недостаточность — как 21–30 нг/мл (51–75 нмоль/л), дефицит — менее 20 нг/мл (50 нмоль/л).

Биологическая роль кальция

• Обеспечивает прочность костной ткани

• Принимает участие в свертывании крови

• Обеспечивает тонус и сокращение мышц

• Является инициатором клеточной активности

• Выполняет функцию вторичного мессенджера

Биологическая роль фосфора

• Структурный компонент костной ткани

• Регулирует кислотно-основное состояние (в составе буферных систем)

• Входит в мембраны клеток

• Участвует в синтезе фосфопротеинов, фосфолипидов и нуклеиновых кислот

• Необходим для синтеза АТФ

• Регулирует активность ферментов путем фосфорилирования-дефосфорилирования

• Превращает витамины в активные формы

Фосфорно-кальциевый обмен в организме:

Основные регуляторы

  1. Витамин D

  2. Паратгормон( не допускает снижения Ca++ в крови:↑всасывание в ЖКТ, реабсорбциюв почках, ↑ резорбцию костной ткани)

  3. Кальцитонин (не допускает повышения Ca++ в крови: способствует минерализации кости, усиливает выведения Са с мочой, )

  4. Микроэлементы (дефицит магния, меди, цинка, железа, кобальта и др. сопровождается гипокальцемией).

Три узловых момента:

  • всасывание фосфора и кальция в кишечнике;

  • взаимообмен их между кровью и костной тканью;

  • выделение Ca и P из организма – реабсорбция в почечных канальцах.

Основным показателем, характеризующим метаболизм Ca, является его уровень в крови, который в норме составляет 2,2–2,8 ммоль/л (содержание P в крови – 1,3–2,3 ммоль/л). Все факторы, ухудшающие всасывание кальция в кишечнике и снижающие реабсорбцию его в почках, вызывают гипокальциемию, которая может частично компенсироваться вымыванием Ca из костей в кровь, что приводит к развитию остеомаляции или остеопорозов. Избыточное всасывание Ca в кишечнике приводит к гиперкальциемии, которая компенсируется за счет усиленного отложения его в кости (зоны роста) и выведения с мочой. Неспособность организма удержать нормальный уровень Ca крови вызывает либо тяжелые гипокальциемические состояния с проявлениями тетании, либо приводит к гиперкальциемии с картиной токсикоза, отложением Ca в различных тканях и органах.

Всасывание кальция в кишечнике зависит не только от количества в пище, но и от его растворимости, соотношения с фосфором, присутствия желчных солей, уровня pH (чем более выражена щелочная реакция, тем хуже всасывание). Большое содержание в пище фитина (манная каша) и щавелевой кислоты снижает всасывание, за счет образования плохо растворимых соединений, цитраты улучшают всасывание. Важное значение имеет состояние слизистой оболочки тонкой кишки: синдромы мальабсорбции, энтериты сопровождаются ухудшением всасывания. Главным регулятором всасывания Ca является витамин D.

Основная масса (более 90%) кальция и 70% фосфора находится в костях в виде неорганических солей. В течение всей жизни костная ткань находится в постоянном процессе созидания и разрушения, обусловленном взаимодействием трех типов клеток: остеобластов, остеоцитов и остеокластов. Кости активно участвуют в регуляции метаболизма Ca и P, поддерживая их стабильный уровень в крови. При снижении уровня кальция и фосфора крови (произведение Ca x P является постоянной величиной и равно 4,5-5,0) развивается резорбция кости за счет активации действия остеокластов, что увеличивает поступление в кровь этих ионов; при повышении данного коэффициента происходит избыточное отложение солей в кости.

Половина содержащегося в крови Ca связана с белками плазмы (главным образом с альбумином), из оставшейся части более 80% это ионизированный кальций, способный проходить через стенку капилляра в интерстициальную жидкость. Именно он является регулятором разнообразных внутриклеточных процессов, в том числе проведение специфического трансмембранного сигнала в клетку, поддержание определенного уровня нервно-мышечной возбудимости. Связанный с белками плазмы Ca является резервом для сохранения необходимого уровня ионизированного кальция.

Выделение Ca и P почками идет параллельно содержанию их в крови. При нормальном содержании кальция его выделение с мочой незначительное и составляет около 2 мг/кг в сутки, при гипокальциемии это количество резко уменьшается, гиперкальциемия увеличивает содержание Ca в моче до 12 мг/кг в сутки. При различных наследственных (фосфат-диабет, болезнь де Тони-Дебре-Фанкони, почечный тубулярный ацидоз, гипофосфатазия) и приобретенных нефропатиях, хронической почечной недостаточности нередко отмечаются нарушения фосфорно- кальциевого обмена, чаще всего с гипофосфатемией и гипокальциемией.

Основными регуляторами фосфорно-кальциевого обмена наряду с витамином D являются паратиреоидный гормон (ПГ) и кальцитонин (КТ) – гормон щитовидной железы.

Под названием “витамин D” понимают группу веществ (около 10), содержащихся в продуктах растительного и животного происхождения, обладающих влиянием на фосфорно-кальциевый обмен. Наиболее активными из них являются эргокальциферол (витамин D2) и холекальциферол (витамин D3). Эргокальциферол в небольших количествах содержится в растительном масле, ростках пшеницы; холекальциферол – в рыбьем жире, молоке, сливочном масле, яйцах. Физиологическая суточная потребность в витамине D величина достаточно стабильная и составляет 400-500 МЕ. В период беременности и кормления грудным молоком она возрастает в 1,5, максимум в 2 раза.

Нормальное обеспечение организма витамином D связано не только с поступлением его с пищей, но и с образованием в коже под влиянием УФ-лучей с длиной волны 280-310 ммк. При этом из эргостерола (предшественник витамина D2) образуется эргокальциферол, а из 7-дегидрохолестерола (предшественник витамина D3) – холекальциферол. При достаточной инсоляции (по некоторым данным достаточно 10- минутного облучения кистей рук) в коже синтезируется необходимое организму количество витамина D. При недостаточной естественной инсоляции: климатогеографические особенности, условия проживания (сельская местность или промышленный город), бытовые факторы, время года и др. недостающее количество витамина D должно поступать с пищей или в виде лекарственных препаратов. У беременных женщин витамин D откладывается в виде депо в плаценте, что обеспечивает новорожденного некоторое время после рождения антирахитическими веществами.

Витамины D2 и D3 обладают очень малой биологической активностью. Физиологическое действие на органы-мишени (кишечник, кости, почки) осуществляется их метаболитами, образующимися в печени и почках в результате ферментативного гидроксилирования. В печени под влиянием гидроксилазы образуется 25- гидроксихолекальциферол 25(OH)D3-кальцидиерол. В почках в результате еще одного гидроксилирования синтезируется дигидроксихолекальциферол – 1,25-(OH)2D3- кальцитриерол, являющийся наиболее активным метаболитом витамина D. Содержание 25(OH)D3 в крови в норме колеблется от 10 до 30 нг/мл (по данным некоторых авторов до 100 нг/мл). Избыток его накапливается в мышечной и жировой тканях. Содержание витамина D в женском молоке составляет 2,0-4,0 мг/100 мл. Кроме этих основных метаболитов в организме синтезируются другие соединения витамина D3 – 24,25(OH)2D3, 25,26(OH)2D3, 21,25(OH)2D3, действие которых изучено недостаточно.

Основная физиологическая функция витамина D (т.е. его активных метаболитов) в организме – регуляция и поддержание на необходимом уровне фосфорно-кальциевого гомеостаза организма. Это обеспечивается путем влияния на всасывание кальция в кишечнике, отложение его солей в костях (минерализация костей) и реабсорбцию кальция и фосфора в почечных канальцах.

Механизм всасывания кальция в кишечнике связан с синтезом энтероцитами кальций-связывающего белка (СаСБ), одна молекула которого транспортирует 4 атома кальция. Синтез СаСБ индуцируется кальцитриолом через генетический аппарат клеток, т.е. по механизму действия 1,25(OH)2D3 аналогичен гормонам.

В условиях гипокальциемии витамин D временно увеличивает резорбцию костной ткани, усиливает всасывание Ca в кишечнике и реабсорбцию его в почках, повышая тем самым уровень кальция в крови. При нормокальциемии он активирует деятельность остеобластов, снижает резорбцию кости и ее кортикальную порозность.

В последние годы показано, что клетки многих органов имеют рецепторы к кальцитриолу, который тем самым участвует в универсальной регуляции ферментных внутриклеточных систем. Активация соответствующих рецепторов через аденилатциклазу и цАМФ мобилизует Ca и его связь с белком-кальмодулином, что способствует передаче сигнала и усиливает функцию клетки, и соответственно, всего органа.

Витамин D стимулирует реакцию пируват-цитрат в цикле Кребса, обладает иммуномодулирующим действием, регулирует уровень секреции тиреотропного гормона гипофиза, прямо или опосредованно (через кальциемию) влияет на выработку инсулина поджелудочной железой.

Вторым важнейшим регулятором фосфорно-кальциевого обмена является паратгормон. Продукция данного гормона паращитовидными железами усиливается при наличии гипокальциемии, и, особенно, при снижении в плазме и внеклеточной жидкости концентрации ионизированного кальция. Основными органами-мишенями для паратгормона являются почки, кости и в меньшей степени желудочно-кишечный тракт.

Действие паратгормона на почки проявляется увеличением реабсорбции кальция и магния. Одновременно снижается реабсорбция фосфора, что приводит к гиперфосфатурии и гипофосфатемии. Считается также, что паратгормон повышает способность образования в почках кальцитриола, усиливая тем самым абсорбцию кальция в кишечнике.

В костной ткани под влиянием паратгормона кальций костных апатитов переходит в растворимую форму, благодаря чему происходит его мобилизация и выход в кровь, сопровождающаяся развитием остеомаляции и даже остеопороза. Таким образом, паратгормон является основным кальцийсберегающим гормоном. Он осуществляет быструю регуляцию гомеостаза кальция, постоянная регуляция – функция витамина D и его метаболитов. Образование ПГ стимулируется гипокальциемией, при высоком уровне Ca в крови его продукция уменьшается.

Третьим регулятором кальциевого обмена является кальцитонин – гормон, вырабатываемый С-клетками парафолликулярного аппарата щитовидной железы. По действию на гомеостаз кальция он является антагонистом паратгормона. Его секреция усиливается при повышении уровня кальция в крови и уменьшается при понижении. Диета с большим количеством кальция в пище также стимулирует секрецию кальцитонина. Этот эффект опосредуется глюкагоном, который таким образом является биохимическим активатором выработки КТ. Кальцитонин защищает организм от гиперкальциемических состояний, снижает количество и активность остеокластов, уменьшая рассасывание костей, усиливает отложение Ca в кости, предотвращая развитие остеомаляции и остеопороза, активирует выведение его с мочой. Предполагается возможность ингибирующего влияния КТ на образование в почках кальцитриола. На фосфорно-кальциевый гомеостаз, кроме трех выше описанных (витамин D, паратгормон, кальцитонин), оказывает влияние множество других факторов. Микроэлементы Mg, Al являются конкурентами Ca в процессе всасывания; Ba, Pb, Sr и Si могут замещать его в солях, находящихся в костной ткани; гормоны щитовидной железы, соматотропный гормон, андрогены активируют отложение кальция в кости, снижают его содержание в крови, глюкокортикоиды способствуют развитию остеопороза и вымыванию Ca в кровь; витамин А является антагонистом витамина D в процессе всасывания в кишечнике. Однако патогенное влияние этих и многих других факторов на фосфорно-кальциевый гомеостаз проявляется, как правило, при значительных отклонениях содержания этих веществ в организме.

Факторы, обусловливающие развитие рахита у детей

1.Высокие темпы роста и развития детей в раннем возрасте и повышенная потребность в минеральных компонентах, особенно у недоношенных детей. Увеличение темпов роста у детей происходит весной (по сравнению с осенними месяцами), что в условиях высоких темпов прибавки массы у детей раннего возраста, особенно на первом году жизни, повышает их потребность в минеральных компонентах в этот период и способствует развитию рахита.

2. Дефицит кальция и фосфора в пище, связанный с дефектами питания. Обмен кальция и фосфатов имеет особое значение в антенатальном периоде жизни. Повышенный риск недостаточности кальция у беременной и, как следствие, у ребенка в период его внутриутробного развития возникает, если женщина не употребляет по разным причинам молочные продукты (вегетарианство, аллергия на белки молока, лактазная недостаточность и др.), при ограничении в питании мяса, рыбы, яиц (дефицит белка), при избытке в пище клетчатки, фосфатов, жира, приеме энтеросорбентов. В грудном молоке содержание кальция колеблется от 15 до 40 мг/дл, и дети первых месяцев жизни за сутки получают от 180 до 350 мг кальция. В то же время необходимое количество кальция для детей первых 6 месяцев жизни составляет не менее 400 мг/сутки. Содержание фосфора в грудном молоке колеблется от 5 до 15 мг/дл, и дети первых месяцев жизни за сутки получают от 50 до 180 мг фосфора. Для детей первого полугодия необходимое количество фосфора составляет не менее 300 мг. Дефицит кальция и фосфора в рационе и нарушение их соотношения возможны при несоблюдении принципов рационального питания у детей, находящихся на искусственном вскармливании, или при пролонгировании естественного вскармливания. Длительное вскармливание грудным молоком на фоне позднего введения прикорма (в 7–8 месяцев и позже) не позволяет избежать развития у ребенка гиповитаминоза даже при соблюдении кормящими матерями полноценной сбалансированной диеты.

3.Нарушение всасывания кальция и фосфатов в кишечнике, повышенное выведение их с мочой или нарушение утилизации в кости, обусловленные незрелостью транспортных систем в раннем возрасте или заболеваниями кишечника, печени и почек. У детей с низкой массой тела при рождении развитие рахита связано с дефицитом фосфатов на фоне усиленного роста и малого количества этого иона в пище, причем успешное излечение рахита обеспечивается увеличением фосфатов в пище и повышением их уровня в крови. Гипокальциемия, вторичный гиперпаратиреоидизм, низкая тубулярная реабсорбция фосфатов и последующая гипофосфатемия развиваются при синдроме мальабсорбции.

4. Снижение уровня кальция и фосфатов в крови и нарушение минерализации кости при длительном алкалозе, дисбалансе цинка, магния, стронция, алюминия, обусловленных разными причинами.

5. Нарушение физиологического соотношения остеотропных гормонов (паратгормона и тиреокальцитонина), связанного со снижением продукции ПТГ (чаще наследственно обусловленный гипопаратиреоз).

6. Экзо- или эндогенный дефицит витамина D, а также более низкий уровень метаболита витамина D как модулятора обмена фосфатов и кальция, особенно в зимневесенние месяцы года.

7. Сниженная двигательная и опорная нагрузка и вторичные в связи с этим нарушения обмена кальция; ограниченная естественная инсоляция у неврологических больных, детей с врожденным вывихом бедра.

Соседние файлы в предмете Факультетская педиатрия