Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UMK_KSE_FGOS-3_dlya_studentov_MITRO_2.doc
Скачиваний:
19
Добавлен:
11.02.2015
Размер:
1.02 Mб
Скачать

Раздел 5. Панорама современного естествознания

Космология

Космология – один из тех разделов естествознания, которые всегда находятся на стыке наук. Строение и эволюция Вселенной изучаются космологией. Космология использует достижения и методы физики, математики, философии. Предмет космологии – весь окружающий нас мегамир, вся «большая Вселенная», и задача состоит в описании наиболее общих свойств, строения и эволюции Вселенной.

С древних времен люди считали Вселенную неизменной (стационарной). С созданием общей теории относительности Эйнштейна появились и первые космологические модели, основанные на этой теории. Первую из них предложил сам автор ОТО. Она также была стационарной. Для того, чтобы обеспечить стационарность модели Эйнштейн вынужден был ввести гипотетические силы космологического отталкивания, которые компенсировали бы силы всемирного тяготения между галактиками, препятствуя сжатию Вселенной.

В 1922 г. русский математик А.А. Фридман на основании решений уравнений ОТО показал, что Вселенная не может быть стационарной. Она должна либо сжиматься, либо расширяться.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятия начала Вселенной как сингулярности (т. е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 г. американский астроном Э. Хаббл обнаружил существования странной зависимости между расстоянием и скоростью галактик: все галактики удаляются от нас, причем со скоростью, которая возрастает пропорционально расстоянию, т.е. Вселенная расширяется.

Достижения науки расширяли возможности в познании окружающего Человека мира. Предпринимались новые попытки объяснить с чего же все началось. Жорж Леметр был первым, кто поставил вопрос о происхождении наблюдаемой крупномасштабной структуры Вселенной. Им была выдвинута концепция "Большого Взрыва" так называемого "первобытного атома" и последующего превращения его осколков в звезды и галактики. Конечно, с высоты современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г. А. Гамова (1904–1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели "начала" эволюционирующей Вселенной "первоатом" Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины – один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого "первоатома" по мнению Г. А. Гамова образовался своеобразный космологический котел с температурой порядка трех миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца – отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после "Большого Взрыва".

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы , а его сотрудники Альфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распостраненности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Ученые стали искать иные физические модели "начала". В 1961 году академик Я. Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц – протонов, электронов и нейтрино. Три года спустя астрофизики И. Д. Новиков и А. Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий – горячей и холодной – и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

Почти в то же время группа американских исследователей во главе с физиком Робертом Дикке, не зная об опубликованных результатах работы Гамова, Альфера и Германа, возродила исходя из иных теоретических соображений горячую модель Вселенной. Посредством астрофизических измерений Р.Дикке и его сотрудники нашли подтверждение существования космического теплового излучения. Это эпохальное открытие позволило получить важную, ранее недоступную информацию о начальных порах эволюции астрономической Вселенной. Зарегистрированное реликтовое излучение есть не что иное, как прямой радиорепортаж об уникальных общевселенских событиях, имевших место вскоре после "Большого Взрыва" – самого грандиозного по своим масштабам и последствиям катастрофического процесса в обозримой истории Вселенной.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель "начала". Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории – о нейтронном составе "космического яйца" и горячем состоянии молодой Вселенной – проверку временем выдержала только последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на эры.

Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с, температура 1012 градусов по Кельвину, плотность 1014 г/см3. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.

Эра лептонов (легких частиц вступающих в электромагнитные взаимодействия). Продолжительность эры 10 с, температура 1010 градусов по Кельвину, плотность 104 г/см3. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы энергии Вселенной – приходится на фотоны. К концу эры температура падает с 1010 до 3000 градусов по Кельвину, плотность с 104 г/см3 до 10-21 г/см3. Главную роль играет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

Эволюцию претерпевают все космические объекты – звезды, планеты, галактики. Сейчас известно, что обычные звезды в ходе претерпеваемых изменений превращаются в так называемые «белые карлики», «нейтронные звезды» и «черные дыры».

Что такое «белый карлик»? Это электронная постзвезда, образующаяся в том случае, когда звезда на последней стадии своей эволюции имеет массу, меньшую 1,2 солнечной массы. Превращение происходит путем медленного сжатия звезды, которая продолжает светить уже не за счет ядерных реакций, а в результате освобождающейся в процессе сжатия гравитационной энергии. Диаметр «белого карлика» равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность – 10 т/см3 – в сотни тысяч раз больше земной плотности. Такую плотность можно получить, утрамбовав грузовой автомобиль в объем наперстка. В течение 1 млрд лет «белый карлик» медленно остывает, превращаясь в «черный карлик» – ничего не излучающий холодный «труп» звезды.

Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. В этом случае на предконечном этапе происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурный процесс ядерных реакций, в которые вступают остатки ядерного вещества звезды. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Остаток звезды уменьшается до размеров в 20-30 км, а средняя ее плотность возрастает до 100 млн т/см3, что, используя прежнее сравнение, равнозначно утрамбовке в наперсток миллиона грузовых автомобилей. Образующийся объект и получил название «нейтронная звезда». Она состоит из протонов и нейтронов, силы гравитации разрушили в ней сложные ядра, и вещество снова стало состоять из отдельных элементарных частиц. Открытые в 1967 г. пульсары (источники пульсирующего, периодически изменяющегося импульсного излучения) как раз и являются намагниченными вращающимися нейтронными звездами.

В случае же, если масса постзвезды (звезды на заключительной стадии своего существования) превысит 2 солнечные массы, она должна превратиться в «черную дыру» с радиусом 5-10 км. Черные дыры имеют и другие названия: «застывшая звезда», «гравитационная могила», «коллапсар», «флуктуар», «отон». Пространство черной дыры как бы «вырвано» из пространства Метагалактики. Если вырезать в листе бумаги дыру, то это даст наглядную двумерную аналогию черной дыры в трехмерном пространстве. Вещество и излучение проваливаются в нее и не могут выйти обратно.

Раньше «черные дыры» считались ненаблюдаемыми. Теперь же наука располагает фактами, которые достаточно убедительно свидетельствуют об их существовании. Они отождествляются с источниками сильного рентгеновского излучения. Высказаны предположения о существовании первичных, реликтовых «мини-черных дыр», образовавшихся на раннем этапе развития Вселенной. Реликтовые черные дыры вызывают исключительный интерес, поскольку в них органически объединяются микро- и макромасштабы. Теоретические расчеты показывают, что, обладая гигантской массой 1015 г, они должны иметь микроскопический размер до 10 -13 см.

На нынешней стадии развития физической космологии на передний план выдвинулась задача создания тепловой истории Вселенной, в особенности сценария образования крупномасштабной структуры Вселенной.

Последние теоретические изыскания физиков велись в направлении следующей фундаментальной идеи: в основе всех известных типов физических взаимодействий лежит одно универсальное взаимодействие; электромагнитное, слабое, сильное и гравитационное взаимодействия являются различными гранями единого взаимодействия, расщепляющегося по мере понижения уровня энергии соответствующих физических процессов. Иначе говоря, при очень высоких температурах (превышающих определенные критические значения) различные типы физических взаимодействий начинают объединяться, а на пределе все четыре типа взаимодействия сводятся к одному единственному протовзаимодействию, называемому «Великим синтезом».

Согласно квантовой теории то, что остается после удаления частиц материи (к примеру, из какого-либо закрытого сосуда с помощью вакуумного насоса), вовсе не является пустым в буквальном смысле слова, как это считала классическая физика. Хотя вакуум не содержит обычных частиц, он насыщен «полуживыми», так называемыми виртуальными тельцами. Чтобы их превратить в настоящие частицы материи, достаточно возбудить вакуум, например, воздействовать на него электромагнитным полем, создаваемым внесенными в него заряженными частицами.

Но что же все таки явилось причиной «Большого Взрыва»? Судя по данным астрономии физическая величина космологической постоянной, фигурирующей в эйнштейновских уравнениях тяготения, очень мала, возможно близка к нулю. Но, даже будучи столь ничтожной, она может вызвать очень большие космологические последствия. Развитие квантовой теории поля привело к еще более интересным выводам. Оказалось, что космологическая постоянная является функцией от энергии, в частности зависит от температуры. При сверхвысоких температурах, господствовавших на самых ранних фазах развития космической материи, космологическая постоянная могла быть очень большой, а главное, положительной по знаку. Говоря другими словами, в далеком прошлом вакуум мог находиться в чрезвычайно необычном физическом состоянии, характеризуемом наличием мощных сил отталкивания. Именно эти силы и послужили физической причиной «Большого Взрыва» и последующего быстрого расширения Вселенной.

Рассмотрение причин и последствий космологического «Большого Взрыва» было бы не полным без еще одного физического понятия. Речь идет о так называемом фазовом переходе (превращении), т. е. качественном превращении вещества, сопровождающимся резкой сменой одного его состояния другим. Советские ученые-физики Д. А. Киржниц и А. Д. Линде первыми обратили внимание на то, что в начальной фазе становления Вселенной, когда космическая материя находилась в сверхгорячем, но уже остывающем состоянии, могли происходить аналогичные физические процессы (фазовые переходы).

Дальнейшее изучение космологических следствий фазовых переходов с нарушенной симметрией привело к новым теоретическим открытиям и обобщениям. Среди них – обнаружение ранее неизвестной эпохи в саморазвитии Вселенной. Оказалось, что в ходе космологического фазового перехода она могла достичь состояния чрезвычайно быстрого расширения, при котором ее размеры увеличились во много раз, а плотность вещества оставалась практически неизменной. Исходным же состоянием, давшим начало раздувающейся Вселенной, считается гравитационный вакуум. Резкие изменения, сопутствующие процессу космологического расширения пространства характеризуются фантастическими цифрами. Так предполагается, что вся наблюдаемая Вселенная возникла из единственного вакуумного пузыря размером меньше 10–33 см! Вакуумный пузырь, из которого образовалась наша Вселенная, обладал массой, равной всего-навсего одной стотысячной доле грамма.

В настоящее время еще нет всесторонне проверенной и признанной всеми теории происхождения крупномасштабной структуры Вселенной, хотя ученые значительно продвинулись в понимании естественных путей ее формирования и эволюции. С 1981 года началась разработка физической теории раздувающейся (инфляционной) Вселенной. К настоящему времени физиками предложено несколько вариантов данной теории. Предполагается, что эволюция Вселенной, начавшаяся с грандиозного общекосмического катаклизма, именуемого «Большим Взрывом», в последующем сопровождалась неоднократной сменой режима расширения.

Согласно предположениям ученых, спустя 10–43 секунд после «Большого Взрыва» плотность сверхгорячей космической материи была очень высока (1094 грамм/см3). Высока была и плотность вакуума, хотя по порядку величины она была гораздо меньше плотности обычной материи, а поэтому гравитационный эффект первобытной физической «пустоты» был незаметен. Однако в ходе расширения Вселенной плотность и температура вещества падали, тогда как плотность вакуума оставалась неизменной. Это обстоятельство привело к резкому изменению физической ситуации уже спустя 10–35 секунды после «Большого Взрыва». Плотность вакуума сначала сравнивается, а затем, через несколько сверхмгновений космического времени, становится больше ее. Тогда и дает о себе знать гравитационный эффект вакуума – его силы отталкивания вновь берут верх над силами тяготения обычной материи, после чего Вселенная начинает расширяться в чрезвычайно быстром темпе (раздувается) и за бесконечно малую долю секунды достигает огромных размеров. Однако этот процесс ограничен во времени и пространстве. Вселенная, подобно любому расширяющемуся газу, сначала быстро остывает и уже в районе 10–33 секунды после «Большого Взрыва» сильно переохлаждается. В результате этого общевселенческого «похолодания» Вселенная от одной фазы переходит в другую. Речь идет о фазовом переходе первого рода – скачкообразном изменении внутренней структуры космической материи и всех связанных с ней физических свойств и характеристик. На завершающей стадии этого космического фазового перехода весь энергетический запас вакуума превращается в тепловую энергию обычной материи, а в итоге вселенская плазма вновь подогревается до первоначальной температуры, и соответственно происходит смена режима ее расширения.

Не менее интересен, а в глобальной перспективе более важен другой результат новейших теоретических изысканий – принципиальная возможность избегания начальной сингулярности в ее физическом смысле. Речь идет о совершенно новом физическом взгляде на проблему происхождения Вселенной.

Оказалось, что вопреки некоторым недавним теоретическим прогнозам (о том, что начальную сингулярность не удастся избежать и при квантовом обобщении общей теории относительности) существуют определенные микрофизические факторы, которые могут препятствовать беспредельному сжатию вещества под действием сил тяготения.

Еще в конце тридцатых годов было теоретически обнаружено, что звезды с массой, превышающей массу Солнца более чем в три раза, на последнем этапе своей эволюции неудержимо сжимаются до сингулярного состояния. Последнее в отличие от сингулярности космологического типа, именуемой фридмановской, называется шварцшильдовским (по имени немецкого астронома, впервые рассмотревшего астрофизические следствия эйнштейновской теории тяготения). Но с чисто физической точки зрения оба типа сингулярности идентичны. Формально они отличаются тем, что первая сингулярность является начальным состоянием эволюции вещества, тогда как вторая – конечным.

Согласно недавним теоретическим представлениям гравитационный коллапс должен завершиться сжатием вещества буквально «в точку» – до состояния бесконечной плотности. По новейшим же физическим представлениям коллапс можно остановить где-то в районе планковской величины плотности, т. е. на рубеже 1094 грамм/см3. Это значит, что Вселенная возобновляет свое расширение не с нуля, а имея геометрически определенный (минимальный) объем и физически приемлемое, регулярное состояние.

Эволюционная химия

C шестидесятых годов 20-го века начинает оформляться четвертый концептуальный уровень химического знания (эволюционная химия), в основе которого лежит исследование процессов самопроизвольного синтеза новых химических соединений, имеющих по сравнению с исходными продуктами более низкую энтропию. Последнее означает, что получаемые продукты являются более сложными и высокоорганизованными по сравнению с исходными. Подобное наблюдается в живых системах. Поэтому современный концептуальный уровень химической науки подразумевает использование химического опыта живой природы, т.е. исследование самоорганизации химических систем. С другой стороны решение проблем эволюционной химии позволит приблизиться к разгадке ключевого вопроса биологии – возникновения и эволюции живого, т.к. в основе большинства биологических процессов лежат процессы химические.

Исключительно важную роль в высокой эффективности биохимических процессов играют ферменты – биокатализаторы. Поэтому для практических нужд ведутся исследования моделирования ферментов с целью использования их в химических реакциях, а также повышения их устойчивости (вне живой клетки ферменты обычно быстро разрушаются). И в этом направлении уже достигнуты определенные успехи.

В концептуальном плане очень важным оказалось осознание идеи эволюции вещества, которая до последней трети 20-го века химиков практически не интересовала (в отличие от биологии, где эволюционные идеи развивались с конца 18-го века, и физики, куда идея эволюции материи стала внедряться со второй четверти 20-го века).

Первые атомы – водорода и гелия возникли примерно через миллион лет после начала расширения Вселенной (Большого Взрыва) еще в дозвездную эру. Ядра атомов более тяжелых химических элементов стали синтезироваться в звездах первого поколения и при взрывах сверхновых через несколько миллиардов лет от Начала. Таким образом, вторичный межзвездный газ был уже существенно богаче по составу химических элементов.

По мере понижения его температуры и возникновения первых твердых тел возникают первые проявления катализа. Однако его роль в химической эволюции до появления более или менее сложных органических молекул была крайне невелика. После того как физические условия приблизились к условиям, существовавшим на молодой Земле, где был накоплен необходимый минимум неорганических и органических соединений, роль катализаторов начала резко возрастать.

В 1964 г. А.П.Руденко выдвинул теорию саморазвития открытых каталитических систем, которая вскоре переросла в общую теорию химической эволюции и биогенеза. В ней показано, что эволюционирующими элементами в развитии химических систем являются те структуры и органические соединения, которые усиливали активность и селективность действия катализаторов. Таким образом, на предбиологической стадии развития химических систем происходил отбор тех веществ и химических реакций, которые необходимы для возникновения живых организмов. Саморазвитие каталитической системы происходит за счет поглощения катализаторами энергии, выделяющейся в ходе реакции, т.е., эволюционное преимущество получают каталитические системы, в которых протекают экзотермические реакции, являющиеся средством отбора прогрессивных эволюционных изменений катализаторов.

Космогония

Космогония (греч. kosmogonía, от kósmos — мир, Вселенная и gone, goneia — рождение) – область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел — Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще.

Космогонические гипотезы 18—19 вв. относились главным образом к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретической астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа которых была выяснена только в 20-х гг.

История космогонических исследований

После общих идей о развитии небесных тел, высказанных ещё греческими философами 4—1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент научной планетной К. заложил И. Ньютон, который обратил внимание на закономерности движения планет. Открыв основные законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств.

В 1755 И. Кант опубликовал книгу "Всеобщая естественная история и теория неба...", в которой впервые дал космогоническое объяснение закономерностям движения планет, выдвинув гипотезу об образовании планетной системы из рассеянной материи, заполнявшей всё пространство этой системы и находившейся в единообразном вращательном движении вокруг центрального сгущения — Солнца. В конце 18 в. В. Гершель, наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их "сгущения".

Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы, во многом сходную с гипотезой Канта. (Когда интересуются главным образом идеей естественного образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта — Лапласа.) Гипотеза Лапласа об образовании Солнечной системы — Солнца, планет и их спутников из вращающейся и сжимающейся газовой туманности состояла в том, что в результате ускорения вращения при сжатии разряженная внешняя часть туманности (протяжённая атмосфера образующегося Солнца) становится всё более сплюснутой, а когда центробежная сила на экваторе стала равной по величине силе тяготения, она приняла чечевицеобразную форму. Вещество на остром ребре чечевицы перестало участвовать в дальнейшем сжатии, а оставалось на месте, образуя газовый диск. Затем он разделился на отдельные кольца и вещество каждого кольца собралось в сгусток, превратившийся затем в планету. При сжатии этих сгустков процесс зачастую повторялся, приводя к образованию спутников планет. Центральный сгусток туманности превратился в Солнце.

Гипотеза Лапласа не смогла объяснить медленное вращение Солнца, прямое вращение планет, наличие спутников с обратным движением и спутников, период обращения которых меньше периода вращения планеты. Привлечение современных астрофизических данных позволило в середине 20 в. по-новому развить идею Лапласа об отделении вещества от сжимающегося протосолнца в результате наступления ротационной неустойчивости. При этом механизм формирования планет оказался отличным от предполагавшегося Лапласом. Тем не менее гипотеза Лапласа сыграла выдающуюся роль в истории науки.

В конце 19 в. появилась гипотеза американских учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими "планетезималями". Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет.

Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия. освобождающаяся при сжатии звезды. Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107—108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В начале 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013—1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь — гелия из водорода. В 1938—39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд, и это явилось началом современного этапа развития звёздной К.

В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюционные изменения звёзд и газовой составляющей галактик, их химического состава и др. параметров. Изучается природа начальных возмущении, развитие которых привело к распаду расширяющегося газа Метагалактики на отдельные сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, которым обладают некоторые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазарах и ядрах активных галактик — сейфертовских, N-галактик и др., — представляют собой существенные этапы эволюции галактик.

Планетная космогония

При выяснении вопроса, в каком состоянии находилось ранее вещество, ныне образующее планеты, важную роль играют закономерности движения планет — их обращение вокруг Солнца в одном направлении по почти круговым орбитам, лежащим почти в одной плоскости, — и деление планет на 2 группы, отличающиеся по массе и составу,— группу близких к Солнцу планет земного типа и группу далёких от Солнца планет-гигантов. При выяснении вопроса о том, откуда взялось около Солнца допланетное вещество, важную роль играет проблема распределения момента количества движения (МКД) между Солнцем и планетами: почему всего 2% общего МКД всей Солнечной системы заключено в осевом вращении Солнца, а 98% приходится на орбитальное движение планет, суммарная масса которых в 750 раз меньше массы Солнца?

В 40-х гг. 20 в. планетная космогония вернулась к классическим идеям Канта и Лапласа об образовании планет из рассеянного вещества, которые развивал советскийц ученый О.Ю. Шмидт. В настоящее время (70-е гг. 20 в.) является общепризнанным, что большинство планет аккумулировалось из твёрдого, а Юпитер и Сатурн также и из газового вещества, По-видимому, существовавшее вблизи экваториальной плоскости Солнца газово-пылевое облако простиралось до современных границ Солнечной системы.

Исходя из господствующих представлений об образовании Солнца из сжимающейся и вращающейся туманности, большинство астрономов считает, что протопланетное облако той или иной массы отделилось под действием центробежной силы от этой туманности на заключительной стадии её сжатия [Ф. Хойл (Великобритания), А. Камерон (США), Э. Шацман (Франция)]. Но, в отличие от Лапласа, рассматривавшего это отделение чисто механически, сейчас учитываются эффекты, связанные с наличием магнитного поля и корпускулярного излучения Солнца, Именно это позволило объяснить распределение МКД между Солнцем и планетами в рамках гипотез о совместном образовании Солнца и протопланетного облака.

Образование планет из протопланетного облака наиболее полно исследовано О. Ю. Шмидтом и его сотрудниками и сторонниками. Процесс можно условно разделить на 2 этапа. На первом этапе длившемся, вероятно, менее 106 лет из пылевой компоненты облака образовалось множество "промежуточных" тел размером в сотни км. На втором этапе длительностью около 108 лет из роя "промежуточных" тел и их обломков аккумулировались планеты. (У наиболее далёких планет — Урана, Нептуна, вещество которых было рассеяно по огромным кольцевым зонам, второй этап мог длиться около 109 лет.) Самые крупные планеты — Юпитер и Сатурн — на основной стадии аккумуляции вбирали в себя не только твёрдые тела, но и газы.

Разные гипотетические варианты процесса образования облака ведут к разным вариантам протекания первого этапа. "Промежуточные" тела должны были образоваться либо в результате собирания пыли в тонкий диск и распада этого диска на сгущения, либо в результате коагуляции пылинок, т. е. их "слипания".

Протекание аккумуляции планет из роя "промежуточных" тел практически не зависит от механизма их образования. Сперва они двигались по круговым орбитам в плоскости породившего их пылевого слоя. Они росли, сливаясь друг с другом и вычерпывая окружающее рассеянное вещество — остатки "первичной" пыли и обломки, образовавшиеся, когда "промежуточные" тела сталкивались с большими относительными скоростями. Гравитационное взаимодействие "промежуточных" тел, усиливающееся по мере их роста, постепенно изменяло их орбиты, увеличивая средний эксцентриситет и средний наклон к центральной плоскости. Те из "промежуточных" тел, которые вырвались вперед в процессе роста, оказались зародышами будущих планет. При объединении многих тел в планеты произошло усреднение индивидуальных свойств движения отдельных объединяющихся тел, и потому орбиты планет получились почти круговыми и компланарными. Анализ процесса аккумуляции планет из роя твёрдых тел позволил О. Ю. Шмидту указать путь к объяснению происхождения прямого вращения планет и закона планетных расстояний.

Рост планет земной группы прекратился тогда, когда они вобрали в себя практически всё твёрдое вещество, имевшееся в районе их орбит (только у Марса часть вещества из его "зоны питания", вероятно, была поглощена массивным Юпитером). Но у планет-гигантов рост прекратился тогда, когда они действием своего притяжения выбросили из зоны своего формирования все "промежуточные" тела и их обломки, а также газы (в рассеянии последних важную роль могло сыграть интенсивное корпускулярное излучение молодого Солнца).

Эволюция Земли

Вопрос ранней эволюции Земли тесно связан с теорией ее происхождения. Сегодня известно, что наша планета образовалась около 4,5 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась ее масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля все сильнее разогревалась. При ударах на ней возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.

Чем крупнее были падавшие объекты, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучиться в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100-1000 км могла приблизится к точке плавления. Дополнительное повышение температуры, вероятно, вызвал распад короткоживущих радиоактивных изотопов.

По-видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а затем вследствие более высокой плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться еще на стадии ее формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определенная часть более тяжелого вещества все же успевала опустится под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.

Предположительно ядро образовалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристализовываться - так (возможно) зародилось твердое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.

Развитие других оболочек продолжалось гораздо дольше и в некотором отношении не закончилось до сих пор.

Литосфера сразу после своего образования имела небольшую толщину и была очень неустойчивой. Она снова поглощалась мантией, разрушалась в эпоху так называемой великой бомбардировки (от 4,2 до 3,9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки - многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стерли следы этого периода.

Около 3,8 млрд. лет назад сложилась первая легкая и, следовательно, "непотопляемая" гранитная кора. В то время планета уже имела воздушную оболочку и океаны; необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров. Кислорода в ней было мало, но он вырабатывался в результате, во-первых, фотохимической диссоциации воды и, во-вторых, фотосинтезирующей деятельности простых организмов, таких как сине-зеленые водоросли.

600 млн лет назад на Земле было несколько подвижных континентальных плит, весьма похожих на современные. Новый сверхматерик Пангея появился значительно позже. Он существовал 300-200 млн. лет назад, а затем распался на части, которые и сформировали нынешние материки.

Эволюция атмосферы

На раннем этапе своей эволюции (4,5 – 4 млрд. лет назад) Земля, еще не имея гидросферы, по-видимому, уже обладала атмосферой, но очень разреженной. Она состояла, вероятно, в основном из молекул и атомов газов и паров, захваченных Землей из космического пространства – водорода, гелия, азота, воды, метана, аммиака, углекислого газа.

Существенное увеличение плотности атмосферы началось примерно 4 млрд. лет назад, вызванной активной дегазацией Земли вследствие изливавшихся на ее поверхность мантийных расплавов, которые в условиях чрезвычайно низкого атмосферного давления вскипали и выделяли в атмосферу летучие соединения, в частности, пары воды. В результате около 3 млрд. лет назад Земля уже имела мощную атмосферу с давлением до 4 атм, состоящую в основном из азота и углекислого газа.

Дальнейшая эволюция земной атмосферы связана с постепенным связыванием атмосферного углекислого газа и повышением в ней концентрации кислорода. Насыщение океанской коры водой сопровождалось в результате реакций гидратации связыванием избытка атмосферного углекислого газа в карбонатах (доломитах). В результате его концентрация в атмосфере существенно понизилась. Вследствие этого около 2,5 млрд. лет назад тепловое излучение от Земли стало почти беспрепятственно проникать через атмосферу (углекислый газ создает парниковый эффект) и температура на ее поверхности резко понизилась примерно с 90º до 6º С, что привело к грандиозному оледенению.

Существенную роль в уменьшении концентрации углекислого газа и насыщении атмосферы кислородом сыграл фотосинтез растений и микроорганизмов. Кроме того, обогащение атмосферы кислородом происходило вследствие фотодиссоциации паров воды высокочастотным электромагнитным излучением Солнца

Н2О НО + О

и образование солей из оксидов щелочных и щелочноземельных металлов

Na2O + 2Cl 2NaCl + O; CaO + 2FCaF2 + O.

Наряду с выделением кислорода шел и обратный процесс его поглощения свободным железом:

2Fe + O2 2FeO.

Процесс окисления свободного железа в мантии завершился около 600 млн. лет назад, что привело к увеличению выхода кислорода в атмосферу. Это способствовало быстрому развитию многоклеточных организмов.

В настоящее время выделяющийся в мантии кислород частично поглощается с образованием магнетита:

3FeO + О Fe3O4.

Расчеты показывают, что через 600 млн. лет все железо в мантии будет находиться в состоянии магнетита. В мантии магнетит устойчив, но при опускании его в ядро Земли будет происходить обратная реакция:

2Fe3O4 3FeO + 5О.

Свободный кислород через систему разломов срединных океанических хребтов устремится в атмосферу. Это приведет к быстрому увеличению давления до 10 атм и температуры до 250º С. Океан выкипит, что еще больше увеличит давление (до 350 атм) и температуру (до 450º С). Жизнь при таких условиях станет невозможной.

История атмосферы закончится через 5 млрд. лет, когда Солнце станет красным гигантом, и атмосфера Земли будет «сметена» солнечным ветром.

Географическая оболочка Земли

Предметом исследования физической географии, т.е. части географии, относящейся к естествознанию, является географическая оболочка Земли. Она представляет собой систему нескольких взаимосвязанных геосферных оболочек: части атмосферы (ниже озонового слоя), гидросферы и части литосферы (земная кора). Границы географической оболочки примерно совпадают с границами биосферы. Поэтому биосфера также является предметом изучения физической географии.

История развития географии связана с постепенным переходом от описательных методов изучения географических объектов и явлений к системно-динамическим методам, т.е. их исследованию в динамике, развитии, выявлению причинно-следственных связей между ними.

Большой вклад в становление географии как науки внес в первой половине 19 в. немецкий геолог и географ Гумбольдт. Он разработал учение о ландшафтах и ландшафтных зонах. В переводе с немецкого «ландшафт» означает местность с характерным для нее однотипным природоустройством, т.е. закономерным сочетанием рельефа, климата, растительности и др. и определенными участками поверхности суши. Однако физическая география не ограничивается рассмотрением только суши, поэтому в настоящее время понятие «ландшафт» часто заменяется понятием «географический комплекс».

Дальнейшее развитие ландшафтоведческого подхода осуществил русский географ В.В. Докучаев во второй половине 19 в., разработав учение о почвах, назвав их «зеркалом ландшафта».

В начале 20 в. в связи с ростом числа конкретных географических наук возникла проблема выявления их специфики с единых концептуальных позиций. Эта проблема была решена А.А. Григорьевым, разработавшим в 30-х годах концепцию географической оболочки. Он рассматривал географическую оболочку как взаимосвязанную систему со своими специфическими закономерностями развития и считал необходимым изучать отдельные ее компоненты (чем и занимались конкретные географические науки) не обособленно, а во взаимной связи.

Географическая оболочка имеет сложную структуру и представляет собой систему природных комплексов разного размера. Наиболее крупные компоненты географической оболочки – географические пояса, охватывающие Землю в широтном направлении. Деление на географические пояса осуществляется по температурному критерию. Каждый географический пояс имеет свой специфический ряд широтных, долготных и высотных зон. Географическую оболочку делят на следующие географические пояса: экваториальный и по два (один в северном и один в южном полушариях) субэкваториальных, тропических, субтропических, умеренных, а также субарктический и субантарктический, а также арктический и антарктический.

Внутри поясов по соотношению температур и влажности выделяют природные зоны – тундры, лесотундры, леса, лесостепи, степи, полупустыни, пустыни.

Зональность по широтам присуща и Мировому океану – с увеличением широты меняются характеристики воды (температура, плотность, соленость), состав планктона, растительности, животных. Зональность по высоте характерна для гор (зона лесов лежит ниже, зона альпийских лугов – выше).

Возникновение и развитие жизни на Земле. Концепции происхождения жизни

Введение

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только учёных, но и всех людей. Ответы на него содержатся в священных писаниях практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы. В Гренландии исследователями был найден образец горной породы с крошечными вкраплениями углерода. Возраст образца более 3,8 млрд. лет. Источником углерода, скорее всего, было какое-то органическое вещество - за такое время оно полностью утратило свою структуру. Учёные полагают, что этот комочек углерода может быть самым древним следом жизни на Земле.

Согласно современным представлениям, жизнь - это одна из форм существования материи, закономерно возникающая при определённых условиях в процессе её развития. Однако такая концепция появилась в ожесточённой многовековой борьбе материализма с различными идеалистическими течениями. Суть различных представлений о происхождении жизни можно выразить в трёх главных концепциях. Одна из них - идеалистические религиозные представления о сотворении всего живого из неживого Творцом, другая - абиогенез Абиогенез - образование органических соединений, распространённых в живой природе, вне организма без участия ферментов; возникновение живого из неживого. и третья - биогенез Биогенез - образование органических соединений живыми организмами; эмпирическое обобщение, утверждающее, что всё живое происходит от живого.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]