Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Краткий курс лекций по экологии.doc
Скачиваний:
114
Добавлен:
08.03.2015
Размер:
6.01 Mб
Скачать

4.2.3. Круговорот фосфора

Минеральный фосфор – редкий элемент, содержание его в земной коре не превышает 1 %, что ограничивает продуктивность экосистем. Фосфор является жизненно важным элементом, входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, жиров, костей и зубов. Кроме того, он необходим для построения таких молекул, которые способны аккумулировать все виды энергии и распределять ее в зависимости от потребностей организма. Основным источником неорганического фосфора служат изверженные породы апатиты и древние осадочные фосфориты.

Круговорот фосфора делится на наземную и морскую части. В наземных экосистемах фосфор поглощается растениями, которые при его участии синтезируют различные органические вещества. Далее фосфор передается по пищевой сети. Затем органические фосфаты вместе с трупами, отходами и выделениями живых организмов возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в ортофосфаты (фосфаты), употребляемые зелеными растениями.

В наземных системах круговорот фосфора происходит с минимальными потерями, в отличие от водных экосистем. В океане большая часть фосфора оседает, уходит на дно, исключается из круговорота и лишь небольшая часть усваивается фитопланктоном. Фитопланктон – основной источник кислорода и органических веществ для других обитателей водной экосистемы, вплоть до морских птиц. Их экскременты (исп. гуано) либо сразу попадают в море, либо в больших количествах скапливаются у берегов, а затем смываются водными потоками в море. Скелеты морских животных, особенно рыб, достигают больших глубин, и заключенный в них фосфор оседает на дно морей и океанов, присоединяясь к фосфору, который сразу затонул. Возврат фосфора в круговорот в природе происходит медленно, и не компенсирует его потери. Сейчас не происходит поднятия донных отложений на поверхность, лишь спустя миллионы лет геологические процессы смогут поднять океанические отложения фосфатов и вернуть их в круговорот, что делает круговорот фосфора менее замкнутым. Главным отличием рассмотренного круговорота является то, что резервным фондом его является не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи.

Ежегодно добывается 12 млн. т фосфорсодержащих пород с целью использования либо в качестве удобрений, либо в производстве моющих средств, что приводит к отрицательным последствиям: к истощению запасов фосфоритов, апатитов; к эвтрофикации водоемов.

Таким образом, круговорот фосфора является лимитирующим (ограничивающим) все другие круговороты и определяющим стабильность биосферы.

4.2.4. Круговорот серы

В горных породах сера встречается в виде сульфидов (FeS2 и др.), в водных экосистемах – в форме иона (SO42-), в виде газообразных соединений сероводорода (H2S) или сернистого газа (SO2), а также в свободном состоянии – самородная сера. Следовательно, резервный фонд серы находится не только в литосфере, но и в атмосфере в отличие от фосфора. Сера жизненно необходима живым организмам, она входит в состав белков и аминокислот, а у растений, кроме того, – в состав эфирных масел.

Большая часть круговорота серы происходит в почве и в водоемах при участии многочисленных микроорганизмов, которые окисляют сульфидную серу до сульфатной серы, которую и поглощают растения. Поглощая сульфаты, растения восстанавливают их и создают серосодержащие аминокислоты, которые необходимы для построения серосодержащих белков. В процессе разрушения микроорганизмами остатков организмов образуется сероводород, который далее окисляется хемосинтезирующими бактериями либо до элементарной серы, либо до сульфатов, которые доступны продуцентам.

Завершающая стадия круговорота серы полностью осадочная. В почве и глубоководных осадках сульфатная сера может образовывать залежи гипса, а сероводород в присутствии железа – сульфиды железа практически не растворимые в воде. По истечению времени и сульфиды, и гипс вновь подвергнутся разрушению, и сера возобновит свой цикл.

Деятельность человека нарушает круговорот серы тем, что, сжигая большое количество ископаемого топлива – мазута и угля с высоким содержанием серы, увеличивает содержание сернистого газа (SO2) в атмосфере, который, смешиваясь водяным паром, приводит к образованию кислотных дождей (рис. 7).

Рис. 7. Схема образования кислотного дождя

Термин "кислотные дожди", обозначающий атмосферные осадки с повышенной кислотностью (рН ниже 5,6) ввёл английский инженер Роберт Смит в 1872 г. в своей книге «Воздух и дождь: начало химической климатологии».

Проблема кислотных дождей возникла в начале 70-х годов ХХ в.. Первыми эту проблему ощутили страны Скандинавского полуострова, где тысячи озер становились «мертвыми», погибали все представители флоры и фауны из-за закисления воды (рН<5). Затем с этой проблемой столкнулись в США, Канаде, Северной Европе, России, Японии (рис. 8). Кислотные дожди являются трансграничными загрязнениями. Выбрасывают SO2 одни страны, а с проблемой кислотного дождя сталкиваются другие страны, так как процесс образования капелек кислоты во времени очень длительный и воздушные массы могут относить их на сотни километров от источника выбросов. Основным «экспортером» кислотных дождей в 80-х годах стала Великобритания. На территорию России больше в 8 раз поступает сернистого газа, чем выносится с ее территории в другие государства. От кислотных осадков страдают не только озера, но и леса, поля, пастбища. Кислота разъедает исторические памятники, бетонные фундаменты, трубопроводы и усиливает коррозию строительных конструкций из железа и других металлов. Капельки кислоты, содержащиеся в воздухе, негативно воздействуют на человека, вызывая аллергию и бронхит. При вдыхании кислотных частиц с пылью, содержащей тяжелые металлы, возможен рост раковых опухолей.

Рис. 8. Средние значения рН=4,1…4,9 осадков в Европе по данным

наблюдений за 1978–1982 гг.

Для уменьшения выбросов сернистого газа предпринимаются следующие меры:

  • замена угля на низкосернистые виды топлива (газ);

  • промывка угля после измельчения;

  • химическое удаление серы – десульфурация;

  • использование скрубберов – жидких фильтров, пропитанных раствором извести, для газообразных продуктов сгорания;

  • сжигание угля в псевдосжиженном слое в смеси с песком и известью, при этом сера соединяется с известью и удаляется с золой.

В 1983 году начала действовать Конвенция о трансграничном загрязнении воздуха на больших расстояниях. В 1985 г. в Хельсинки 20 государств и Канада подписали Протокол о снижении выбросов серы на 30 % . Принятые меры в странах Большой семерки в 1970–1990 гг. позволили снизить выбросы SOх.

В рамках круговорота всех элементов происходит избавление от отходов и получение ресурсов, что является основополагающими факторами, обеспечивающими существование экосистем.