Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

02 BOPs / Woods D.R 2008 rules-of-thumb-in-Engineering-practice (epdf.tips)

.pdf
Скачиваний:
0
Добавлен:
12.03.2024
Размер:
3.47 Mб
Скачать

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC

Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

 

regeneration

 

 

 

 

 

 

 

 

Amination

Ni,

 

 

 

 

 

 

via reduction

Cu & Cr oxides

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ammoxidation

Pt Pt–Ru

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mixed oxides,

acrylonitrile

220

1–3 years

 

 

 

 

Fe, Sb, Sn

ex ammonia, pro-

 

 

 

 

 

 

 

pylene

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mixed metal

acrylonitrile

450

1–3 years

volatalization,

 

periodic addition

 

molybdates or

ex propene

 

 

attrition

 

of Mo ammo-

 

antimonates

 

 

 

 

 

nium salt as

 

 

 

 

 

 

 

vapor

none

Carbonylation, homogeneous hydroformylation, FT

Ni or Pd on C or Co Rh or Ni carbonyl or Fe carbonyl

 

Cu

methanol

200–300

2–8 years

slow sintering,

325

 

 

 

 

 

poisons

 

 

 

 

 

 

 

 

Chlorination

none

 

 

 

 

 

 

 

 

 

 

 

 

 

ferric chloride

 

 

 

 

 

 

 

 

 

 

 

 

201 Guideline General 2.6

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC

Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

 

regeneration

 

 

 

 

 

 

 

 

Condensation

Fe/alumina

ammonia ex hy-

450–470

10–15 years

slow sintering,

625

 

 

[K2 O]

drogen, nitrogen

 

 

poisons

 

 

 

 

 

 

 

 

 

 

 

Rh/Ba/MgO or

 

 

 

 

 

 

 

iron oxide or alkali

 

 

 

 

 

 

 

earths or homoge-

 

 

 

 

 

 

 

neous

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cracking, cat

Co/Mo S or Si

 

 

 

 

 

 

 

alumina or Pd or

 

 

 

 

 

 

 

oxides of V, Mn, Fe,

 

 

 

 

 

 

 

Cu, Mo, W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

zeolite

refinery oils

500–560

1–2 s

rapid coking,

595

regenerate con-

 

 

 

 

 

poisons

 

tinuously in sepa-

 

 

 

 

 

 

 

rate fluidized bed

 

 

 

 

 

 

 

 

Dehydration

Ta silica

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dehydrochlorination

none

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

silica alumina or

 

 

 

 

 

 

 

NaOH or metal

 

 

 

 

 

 

 

chloride

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dehydrogenation

none

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu–Cr; Cu–Zn–

2 butanone

 

2 years

 

 

regenerate every

 

bronze

 

 

 

 

 

2–3 months

 

 

 

 

 

 

 

 

 

Ni or Pt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

oxides of Cr,

butadiene ex bu-

600–680

i 0.5 year

 

 

regenerate for 1 h

 

Ni, Fe

tene or butane

 

 

 

 

every 1–7 days

 

 

 

 

 

 

 

 

Reactors 6 202

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

regeneration

 

 

 

 

 

 

 

Dimerization

tripropylalumi-

 

 

 

 

 

 

num

 

 

 

 

 

 

 

 

 

 

 

 

Disproportionation

CdI or zeolite

 

 

 

 

 

 

 

 

 

 

 

 

 

Rh/alumina

propylene from

50

 

 

regenerate every

 

 

ethylene

 

 

 

10 days

 

 

 

 

 

 

 

Epoxidation

homogeneous

 

 

 

 

 

 

 

 

 

 

 

 

Esterification

IX resin or

 

 

 

 

 

 

sulfuric acid

 

 

 

 

 

 

 

 

 

 

 

 

Ethynylation

Cu acetylide or

 

 

 

 

 

 

KOH

 

 

 

 

 

 

 

 

 

 

 

 

FT

Ni or Cu with

 

 

 

 

 

 

ZnO or carbides of

 

 

 

 

 

 

Fe, Mo, W

 

 

 

 

 

 

 

 

 

 

 

 

 

Co/ZrO2/SiO2

alcohols

5 years

 

 

regen. once per

 

 

 

 

 

 

year.

 

 

 

 

 

 

 

Halogenation

none

 

 

 

 

 

 

 

 

 

 

 

 

Hydration

homogeneous

 

 

 

 

 

 

cupric chloride

 

 

 

 

 

 

 

 

 

 

 

 

 

sulfuric or

 

 

 

 

 

 

phosphoric acid or

 

 

 

 

 

 

Ta on silica

 

 

 

 

 

 

 

 

 

 

 

 

203 Guideline General 2.6

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC

Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

 

regeneration

 

 

 

 

 

 

 

 

Hydrodealkylation

none

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cr or Mo oxides or

 

 

 

 

 

 

 

Pt on zeolites

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydroformylation

Co or Ru or Rh or

 

 

 

 

 

 

 

Co or Pd on C or

 

 

 

 

 

 

 

Cu, Ni, Zn or Fe

 

 

 

 

 

 

 

pentcarbonyl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hydrogenation

Pt or Cu on Si or

 

 

 

 

 

 

 

Ni Cr or Pd on C or

 

 

 

 

 

 

 

Raney Ni or Pt-Co/

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu on ZnO

alcohols ex

220–270

0.5–1 year

slow sinter

 

 

 

 

aldehydes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cu-Cr oxides

furfuryl alcohol

150–200

 

coke

 

regenerate with

 

 

ex furfural

 

 

 

 

oxidation

 

 

 

 

 

 

 

 

 

CuO/ ZnO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sulfided Ni

aniline ex

300–475

 

coke

 

decoke via air

 

 

nitrobenzene

 

 

 

 

burn at 300 with

 

 

 

 

 

 

 

later reduction via

 

 

 

 

 

 

 

hydrogen

carbides of Fe, Mo, W on alumina

Reactors 6 204

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC

Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

 

regeneration

 

 

 

 

 

 

 

 

Hydrolysis

sulfuric acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pd or Co Mo

 

 

 

 

 

 

Hydrotreat

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sulfided

light distillate

300

10 year

poisons V, Ni,

450

regenerate in situ

 

Co–Mo/g-

 

 

 

Fe; coke

 

by burning coke

 

alumina

 

 

 

 

 

about 2 times via

 

[Bo, P, K, SiO2]

 

 

 

 

 

combustion with

 

 

 

 

 

 

 

steam–air. For

 

 

 

 

 

 

 

poisoning, regen.

 

 

 

 

 

 

 

externally with

 

 

 

 

 

 

 

aqueous leach

 

 

 

 

 

 

 

 

 

sulfided Ni

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isomerization

zeolites

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pt

xylenes ex ethyl

400–480

3–5 years

 

 

regenerate every

 

 

benzene

 

 

 

 

6–18 months

 

 

 

 

 

 

 

 

 

oxides of V, Mn, Fe,

 

 

 

 

 

 

 

Cu, Mo, W or oxi-

 

 

 

 

 

 

 

des of rare earths

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nitration

Co naphthaneate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mixed acids

 

 

 

 

 

 

Guideline General 2.6

205

Table 6.8 Continued.

Type of reaction

Example

Products/

Temperature, hC

Catalyst life

Cause of decay

Max. temp., hC

Comments about

 

catalysts

reactants

 

 

 

 

regeneration

 

 

 

 

 

 

 

 

Oxidation

Cu Ag or Fe Mo

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ag/a-alumina

ethylene oxide

200–270

1–3 years

poisons, Cl and S;

 

regen. via peri-

 

[alkali metals]

ex ethylene, air

 

 

some coking

 

odic addition of

 

 

 

 

 

 

 

Cs/methanol

 

 

 

 

 

 

 

solution

 

 

 

 

 

 

 

 

 

Pt Rh gauze

NO ex ammonia

800–900

0.1–0.5 years

loss of Pt, fouling

 

 

 

 

 

 

 

 

 

 

 

Pd Cd/alumina

vinyl acetate ex

140–180

2 years

sintering

 

 

 

 

ethylene, acetic

 

 

 

 

 

 

 

acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V/K sulfate

sulfur trioxide

525

5–10 years

plugging, sintering

 

 

 

 

ex sulfur dioxide

 

 

 

 

 

mixed oxides; metallic oxides or AgO

homogeneous: Mn, Cu or Co acetate

Reforming

zeolite

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

metals, Ni/

steam reform

500–850

2–4 years

sintering, coke,

875

 

 

alumina

ex methane

 

 

sulfur poison

 

 

 

 

 

 

 

 

 

 

 

Pt/treated

 

460–525

0.01–0.5 years

coking

550

frequent regen-

 

alumina

 

 

 

 

 

eration needed

 

 

 

 

 

 

 

 

Reactors 6 206

 

 

6.2 General Guideline

207

Table 6.9 How the solid catalyst affects choice of reactor.

 

 

 

 

 

 

 

 

 

 

Conditions

Consider the following

Constraints

 

type of reactor

 

 

 

 

 

 

 

Catalyst retains activity

fixed bed

if I 3 months use fluidized,

i 3 months:

 

moving, or slurry

Operating pressure high

fixed bed

if catalyst strength

 

 

i 3 kg/ particle

Reaction is highly exothermic

fluidized bed

if the attrition I 1 %/day

Very short contact time

monolith with low pressure

 

 

 

available

drop or fluidized/loop

 

 

 

 

reactors with recycle

 

 

 

Enzyme catalyst

fixed bed

if immobilized

 

CSTR

if pH and temperature control

 

 

are vital or if mass transfer

 

 

controls

 

 

 

 

 

6.2.4

Specific Guidelines for Gases Reacting with Solid

When the solid reacts with gas, usually heat transfer controls because these are highly exothermic or endothermic reactions. Particle size and size distribution are critical. These reactions may follow different patterns:

xfor multigranule reactions the time for reaction = independent of particle diameter.

xfor shrinking core without ash reactions, the time for reaction

/particle diameter (for reaction controlled), / D1.5 (for fluid diffusion controlled with fluidized, fixed or moving beds),

/D2 (for fluid diffusion controlled with transported bed)

xfor shrinking core plus ash, the time for reaction / Dp

(for reaction controlled), / Dp (for fluid diffusion controlled),

/Dp2 (for fluid diffusion through the ash controlled).

6.2.5

Bioreactors

The two general types of bioreactors are anaerobic and aerobic: anaerobic means no oxygen is present; aerobic means oxygen must be supplied with 17 kJ of heat released/g O2 utilized = 13 kJ/g of cell mass generated.

The three types of biotechnical products are:

1.cell biomass

2.metabolic products of cells: anaerobic: alcohols, organic acids, hydrogen, carbon dioxide; for aerobic: citrate, gluta-

208 6 Reactors

mate, lactate, antibiotics, hydrocarbons and polysaccharides, yeast and single cell protein SCP

3. enzymes that can be used as catalysts.

In selecting an aerobic bioreactor, there is a tradeoff between the degree of mixing and the required rate of oxygen transfer, OTR. How this affects the type of reactor is illustrated in Table 6.10.

Some useful definitions are:

microorganism: microscopic, living organisms including prokaryotes (e.g. bacteria) and eukaryotes (fungi).

bacteria: microorganisms that are cells without a fully differentiated nucleus. May be round, rod-like, spiral or filamentous of diameter 0.5–3 mm.

fungi: microorganisms that are cells with membranes with a discrete nuclei (eukaryotes). They are saprophytic and parasitic plants that lack chlorophyll. Fungi are typically filaments that are 5-15 mm diameter and 50–500 mm long.

Table 6.10 Some bioreactions with different types of microorganisms.

Factors related to the reactor

Microorganisms

 

 

 

 

Bacteria

Fungi

 

Mixed culture

 

 

yeasts

fungi, moulds

 

 

 

 

 

 

Amount of biomass, kg/m3

10–50 (0.001–0.01)

10–50

10–50

5

(volume fraction)

 

 

 

 

Biomass viscosity, mPa s

low, I 100

low, I 100

high, 100–1500

low, I 100

Oxygen consumption, g/s m3

0.2–1

0.2–1

0.2–1

0.002–0.01

kLa, gas–liquid, 1/s

0.05–0.2

0.05–0.2

0.01

0.003

kLa, liquid–solid, 1/s

0.01–0.5

0.25 bubble

0.1–1 jet loop

 

Metabolic heat production,

3–15

3–15

3–15

0.03–0.14

kW/m3

 

 

 

 

Sensitivity to shear

relatively insensi-

sensitive (animal and plant cells)

fluidized

 

tive, robust

 

 

 

Choice of reactor configuration

aerated STR;

bubble reactors: jet loop or air lift

fluidized

if fermentation requires high

0.1–1.7 kW/m3

 

 

 

OTR; e.g. antibiotics, acetic

 

 

 

 

acid, SCP

 

 

 

 

Choice of reactor configuration

aerated STR;

packed column, immersed wick,

 

if fermentation requires low

0.1–1.7 kW/m3

immersed column

 

OTR;

 

 

 

 

Example rate of growth of

1–2.5

0.5–1.2

0.3–0.5

 

biomass for the production

 

 

 

 

of Single cell protein, SCP, g/s m3 of broth

6.2 General Guideline 209

yeast: a fungus of the family Saccharomycetacea that is typically 1–50 mm in diameter.

enzyme: a protein produced by living cells that catalyzes the metabolic process. For mixed culture microorganisms used for biological treatment of waste water, the general range of values used are: BODu z 1.43 q BOD5; Approximately

1.4–1.5 kg O2/kg BOD5.

Microorganisms use the organic substrate, characterized by BOD5 or COD, for growth and for endogenous respiration. Illustrative reaction rate terms include, for COD at 20 hC:

Substrate concentration at which the specific growth rate is 0.5 maximum, Ks, = 25–100 mg COD/L.

Maximum specific utilization rate of the substrate, k, = 6–8 kg COD/day kg VSS.

Biomass lost to endogenous respiration per unit time per unit biomass, Kd, = 0.05–0.1 1/day.

Yield of biomass produced per unit of substrate removed, YT, = 0.35–0.45 mg VSS/mg COD.

6.2.6

Reactors for Supercritical Conditions

When a fluid is compressed and heated above the critical conditions (or to supercritical conditions, sc), the differences between gas and liquid disappear. For carbon dioxide, this occurs for temperatures above 31 hC and pressures above 7.3 MPa. For reactions (such as alkylations, aminations, hydroformylations, hydrogenations and Fischer Tropsch synthesis) occurring in supercritical fluids, the reaction rate is often increased dramatically because of improved desorption of heavy molecules; minimizing the oxygen and hydrogen solubility limitations, improved heat transfer, and improved selectivity by a catalyst by minimizing pore diffusion limitations.

6.2.7

Reactors for Polymerization

The options for polymerization reactions, the types of polymerizations and the reactor configurations are given in Table 6.11.

For suspension or emulsion polymerization, the shaft power can be estimated as follows:

Shaft kW = 16 (Di/107)(N/170)3 n where

N = rpm

n = number of impellers on the shaft. Di = diameter of impeller in cm Motor kW = 1.3 q shaft kW

2106 Reactors

Table 6.11 Polymerization reactions.

Liquid phase reactors

Types of polymerizations

Reactor options

 

 

 

1. Bulk: liquid monomer with

condensations, LDPE, PS,

STR (3–6 kW/m3 mixer; tip

initiator in absence of diluent

Nylon, PMMA, acrylics,

velocity 0.2–0.3 m/s), long

or solvent.

polyacetals

tubular reactors, screw extru-

 

 

ders

2. Solution: monomer dispersed in solvent with soluble catalyst

free radical, ionic, Zeigler Nichols; thermosets, acrylics, PVAlc, PVC, polybutadiene, polypropylene, melamine phenolic resins, polyisoprene, polycarbonate, chlorinated polyesters

glass or s/s STR (2–8 kW/m3 mixer; heat transfer area = 1–4 m2/m3 depending on the volume of the reactor with small area associated with large volumes).

3.Suspension with large drops 10–1000 mm of insoluble monomer and catalyst suspended in water.

4.Emulsion: small drops 0.5–10 mm of insoluble monomer suspended in water with water-soluble catalysts in micelles

Gas phase reactors

free radical addition, styrenic IX resins, vinyl polymers, PVC, styrene-acrylo- nitrile, polypropylene

industrial polymers, synthetic rubbers, polybutadience, PVC, latex paints, adhesives, coatings, ABS, PV acetate, styrene butadiene

batch STR (1–6 kW/m3 mixer; tip speed 6–9 m/s; 3-retreated blades at 46–120 rpm; heat transfer area = 1–4 m2/m3 depending on the volume of the reactor with small area associated with large volumes); continuous PVC

batch STR; 2–3 kW/m3 mixing @ 155–230 rpm; shear number 9000–12 000; impeller diam./tank diam. = 0.25–0.3, U = 110 W/m2 K; heat transfer area = 3.3 m2/m3.

Gaseous monomers,

heterogeneous solid cat.

fluidized beds; horizontal with

continuous

PE, PP;

weirs & rotating paddles;

 

 

helically stirred tanks.

 

 

 

Since polymerizations are exothermic, it is essential that the heat of reaction is removed. Since polymer and scale tend to build up on any heat exchange surfaces contacting the reactants the preference is to have jacketed reactors. The amount of internal surface area varies from 4 m2/m3 for 1 m3 vessels and reduces to 1.5 m2/m3 for a 35 m3 volume reactor. Cooling fingers or external coolers can be used. The overall heat transfer coefficients are in the range 60–350 W/m2 K. In general, to account for the fouling on the walls, the internal heat transfer coefficient for polymerization reactions is about half that expected.