Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НОВИКОВ_2013-14 / Лаб_№1.doc
Скачиваний:
31
Добавлен:
19.03.2015
Размер:
158.21 Кб
Скачать

2.2 Пример создания модели

Создать модель движения системы (торпеды) в горизонтальном канале, состоящую из подмодели углового движениявокруг вертикальной оси и из подмодели цепиуправления.

При этом подмодель углового движенияможет быть представлена в виде двух последовательно соединенных звеньев:

- апериодического

и

- интегрирующего

.

В свою очередь подмодель цепи управленияможет быть представлена в виде двух параллельно соединенных частей:

– части, управляемой гироскопом направления и представляющей собой обычное усилительное звено K;

- части, управляемой гиротахометром, которую можно представить как дифференцирующе-колебательное звено W3.

Соответствующая структурная схема имеет вид, представленный на рисунке,

где M– момент внешних сил относительно вертикали;

ω - угловая скорость торпеды;

ψ– угол поворота торпеды вокруг вертикали (угол рыскания).

Mу– момент управляющих сил, создаваемый при помощи рулей управления.

Решение.

Подмодель углового движения:

>> W1=tf(25,[100 50])

Transfer function:

25

---------------

100 s + 50

>> W2=tf(1, [1 0])

Transfer function:

1

---.

s

Последовательное соединение этих звеньев можно осуществить двумя способами:

– применением процедуры series:

>> W0=series(W1, W2)

Transfer function:

25

---------------------;

100 s^2 + 50 s

- либо просто операцией “перемножения” моделей:

>> W01=W1*W2

Transfer function:

25

----------------------.

100 s^2 + 50 s

Теперь сформируем цепь управления, входом которой является угол рыскания торпеды ψ, а выходом – моментMу, накладываемый на торпеду со стороны ее рулей направления.

Усилительное звено:

>> K=tf(2,1)

Transfer function:

2

Дифференцирующе-колебательное звено W3:

>> W3=tf([100 0], [1 10 100])

Transfer function:

100 s

-----------------------.

s^2 + 10 s + 100

Параллельноесоединение этих двух звеньев управления можно осуществить тоже двумя способами:

- либо используя процедуру parallel

>> U1=parallel(K,W3)

Transfer function:

2 s^2 + 120 s + 200

-------------------

s^2 + 10 s + 100

- либо применяя операцию “сложения” моделей

>> U=K+W3

Transfer function:

2 s^2 + 120 s + 200

------------------------.

s^2 + 10 s + 100

Теперь найдем модель всей САУ угловым движением торпеды, рассматривая цепь управления как цепь отрицательной обратной связи для торпеды, пользуясь для объединения прямой и обратной цепи процедурой feedback:

>> sys=feedback(W01,U)

Transfer function:

25 s^2 + 250 s + 2500

-------------------------------------------------------------------.

100 s^4 + 1050 s^3 + 10550 s^2 + 8000 s + 5000

После того, как система сформирована, можно ввести при помощи процедуры set некоторые ее символьные описания. В частности присвоить названия входам и выходам системы, а также дать краткий комментарий к самой системе.

>> set(sys,'InputName','Момент сил', 'OutputName','Угол рыскания')

>> set(sys,'Notes','Угловое движение торпеды')

>> get(sys)

num: {[0 0 25 250 2.5e+003]}

den: {[100 1.05e+003 1.06e+004 8e+003 5e+003]}

Variable: 's'

Ts: 0

ioDelay: 0

InputDelay: 0

OutputDelay: 0

InputName: {'Момент сил'}

OutputName: {'Угол рыскания'}

InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]

Notes: {'Угловое движение торпеды'}

UserData: []

Соседние файлы в папке НОВИКОВ_2013-14