Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УРАН2.doc
Скачиваний:
14
Добавлен:
23.03.2015
Размер:
242.69 Кб
Скачать

3 Уран и его изотопы

Уран — это естественно встречающийся в природе элемент, находящий применение,среди прочего, в ядерной энергетике. Природный уран состоит в основном из смеси трех изотопов: 238U, 235U и 234U.

Обедненный уран (ОУ) — это побочный продукт процесса обогащения урана (т. е. повышения содержания в нем расщепляющегося изотопа 235U) в ядерной энергетике; из него практически полностью удален радиоактивный изотоп 234U и на две трети — 235U. Таким образом, ОУ состоит почти полностью из 238U, а его радиоактивность составляет около 60% от радиоактивности природного урана. В ОУ может присутствовать также микроколичество других радиоактивных изотопов, привнесенных в ходе обработки. Химически, физически и токсически ОУ ведет себя так же, как и природный уран в металлическом состоянии. Мелкие частицы обоих металлов легко возгораются, образуя окислы.

Применение обедненного урана. В мирных целях ОУ используется, в частности, при изготовлении самолетных противовесов и противорадиационных экранов медицинской радиотерапевтической аппаратуры, при транспортировке радиоактивных изотопов. Из-за своей высокой плотности и тугоплавкости, а также доступности ОУ используется в тяжелой танковой броне, противотанковых боеприпасах, ракетах и снарядах. Оружие, в котором присутствует ОУ, считается обычным оружием и свободно применяется вооруженными силами.

Вопросы, порождаемые применением обедненного урана. Из выстреленного боеприпаса обедненный уран высвобождается в виде мелких частиц или пыли, которые могут попадать в организм при вдыхании или проглатывании либо оставаться в окружающей среде. Есть вероятность того, что применение оружия с ОУ сказывается на здоровье людей, проживающих в районах конфликтов в Персидском заливе и на Балканах. Некоторые считают, что «синдром войны в Персидском заливе» связан с облучением обедненным ураном, однако причинная зависимость пока не установлена. ОУ попадал в окружающую среду в результате авиакатастроф (например: Амстердам, Нидерланды, 1992 г.; Станстед, Соединенное Королевство, январь 2000 г.), вызывая озабоченность правительств и неправительственных организаций.

Обедненный уран и здоровье человека. Воздействие ОУ на здоровье человека является разным в зависимости от химической формы, в которой он попадает в организм, и может вызываться как химическими, так и радиологическими механизмами. Информации о том, как уран сказывается на здоровье людей и окружающей среде, немного. Вместе с тем, поскольку уран и ОУ — это, в сущности, одно и то же, за исключением состава радиоактивных компонентов, научные исследования по природному урану применимы и к ОУ. Что касается радиационного воздействия ОУ, то картина дополнительно осложняется тем, что большинство данных относится к воздействию на человеческий организм природного и обогащенного урана. Воздействие на здоровье зависит от того, каким образом произошло облучение и какова его степень (через дыхательные пути, при проглатывании, при контакте или через рану), и от характеристик ОУ (размер частиц и растворимость). Вероятность обнаружения возможного воздействия зависит от обстановки (армия, гражданская жизнь, производственная среда).

Типы облучения. При нормальном потреблении человеческим организмом пищи, воздуха и воды в нем присутствует в среднем примерно 90 микрограммов (мкг) урана: примерно 66% в скелете, 16% в печени, 8% в почках и 10% в других тканях. Наружное облучение происходит при близости к металлическому ОУ (например, при работе на складе боеприпасов или при нахождении в машине с боеприпасами или броней, в которых присутствует ОУ) либо при контакте с пылью или осколками, образовавшимися после взрыва или падения. Облучение, полученное только снаружи (т. е. не при проглатывании, не через дыхательные пути и не через кожу), приводит к последствиям исключительно радиологического свойства. Внутреннее облучение происходит в результате попадания ОУ в организм при проглатывании или вдыхании. В армии облучение происходит еще и через раны, образовавшиеся при контакте со снарядами или броней, в которых присутствует ОУ.

Поглощение урана в организме. Большая часть (свыше 95%) урана, попадающего в организм, не поглощается, а удаляется с калом. Из той части урана, которая поглощается кровью, примерно 67% будет в течение суток отфильтровано почками и удалено с мочой. Уран переносится в почки, костную ткань и печень. Подсчитано, что выведение половины этого урана с мочой занимает от 180 до 360 дней.

Опасность для здоровья:

Химическая токсичность: уран вызывает повреждение почек у подопытных животных, и некоторые исследования указывают на то, что долговременное облучение может приводить к нарушению почечной функции у людей. Наблюдавшиеся типы нарушений: узелковые образования на поверхности почки, поражение трубчатого эпителия и повышение содержания глюкозы и белка в моче.

Радиологическая токсичность: распад ОУ происходит главным образом путем испускания альфа-частиц, которые не проникают через внешние слои кожи, но могут влиять на внутренние клетки организма (более подверженные ионизирующему воздействию альфа - излучения), когда ОУ попадает в организм при проглатывании или вдыхании. Поэтому альфа - и бета-облучение при вдыхании нерастворимых частиц ОУ может приводить к повреждению легочных тканей и повышать риск рака легких. Аналогичным образом, предполагается, что поглощение ОУ кровью и его накопление в других органах, в частности в скелете, создает дополнительный риск рака этих органов, зависящий от степени радиационного облучения. Считается, однако, что при низкой степени облучения риск раковых заболеваний весьма низок.

В рамках выполненных на сегодняшний день ограниченных эпидемиологических исследований, посвященных изучению внутреннего облучения в результате попадания частиц ОУ при проглатывании, при вдыхании либо через повреждения кожи или раны, а также в рамках обследования людей, которым по роду занятий приходится сталкиваться с природным или обогащенным ураном, каких-либо негативных последствий для здоровья не обнаружено.

Обедненный уран в окружающей среде. В засушливых регионах большая часть ОУ остается на поверхности в виде пыли. В более дождливых местностях ОУ легче проникает в почву. Возделывание зараженной почвы и потребление зараженной воды и пищи могут создавать опасность для здоровья, однако она будет, скорее всего, невелика. Основным фактором опасности для здоровья будет, скорее, химическая токсичность, а не облучение. Риск облучения обедненным ураном в результате потребления зараженной пищи и воды при возвращении к нормальной жизни в зоне военного конфликта, видимо, более велик для детей, чем для взрослых, поскольку в силу своего любопытства дети склонны тянуть все с рук в рот, а это может привести к попаданию в организм большого количества ОУ с зараженной почвы.

Стандарты. У ВОЗ имеются нормативы в отношении урана, которые применимы и к ОУ. В настоящее время такими нормативами являются:

«Руководство по контролю качества питьевой воды»: 2 мкг/л - показатель, который считается безопасным исходя из данных о субклинических почечных изменениях, приводимых в эпидемиологических исследованиях (ВОЗ, 1998 г.);

допустимая суточная доза (ДСД) для попадания урана через рот: 0,6 мкг на килограмм веса в сутки (ВОЗ, 1998 г.);

предельные нормы ионизирующего облучения: 1 мЗв за год для населения вообще и 20 мЗв в среднем за год на протяжении пяти лет для лиц, работающих в радиационной обстановке (Основные нормы безопасности, 1996 г.).

Изотопы урана — разновидности атомов (и ядер) химического элемента урана, имеющие разное содержание нейтронов в ядре. На данный момент известны 26 изотопов урана и еще 6 возбуждённых изомерных состояний некоторых его нуклидов. В природе встречаются три изотопа урана: 234U (изотопная распространенность 0,0055 %), 235U (0,7200 %), 238U (99,2745 %).

Нуклиды 235U и 238U являются родоначальниками радиоактивных рядов — ряда актиния и ряда радия соответственно. Нуклид 235U используется как топливо в ядерных реакторах, а также в ядерном оружии (благодаря тому, что в нём возможна самоподдерживающаяся цепная ядерная реакция). Нуклид 238U используется для производства плутония-239, который также имеет чрезвычайно большое значение как в качестве топлива для ядерных реакторов, так и в производстве ядерного оружия. Характеристики изотопов урана приведены в таблице 1.

Таблица 1 – Характеристики изотопов урана

Символ нуклида

Z(p)

N(n)

Масса изотопа (а.е.м.)

Избыток массы (кэВ)

Период полураспада (T1/2)

Спин и чётность ядра

Распространённость изотопа в природе (%)

Энергия возбуждения (кэВ)

217U

92

125

217,024370(90)

22 700(90)

26(14) мс

1/2−#

218U

92

126

218,023540(30)

21 920(30)

6(5) мс

0+

219U

92

127

219,024920(60)

23 210(60)

55(25) мкс

9/2+#

220U

92

128

220,024720(220)#

23 030(200)#

60# нс

0+

221U

92

129

221,026400(110)#

24 590(100)#

700# нс

9/2+#

222U

92

130

222,026090(110)#

24 300(100)#

1,4(7) мкс

0+

223U

92

131

223,027740(80)

25 840(70)

21(8) мкс

7/2+#

224U

92

132

224,027605(27)

25 714(25)

940(270) мкс

0+

225U

92

133

225,029391(12)

27 377(12)

61(4) мс

5/2+#

226U

92

134

226,029339(14)

27 329(13)

269(6) мс

0+

227U

92

135

227,031156(18)

29 022(17)

1,1(1) мин

(3/2+)

228U

92

136

228,031374(16)

29 225(15)

9,1(2) мин

0+

229U

92

137

229,033506(6)

31 211(6)

58(3) мин

(3/2+)

230U

92

138

230,033940(5)

31 615(5)

20,8 сут

0+

231U

92

139

231,036294(3)

33 807(3)

4,2(1) сут

(5/2)(+#)

232U

92

140

232,0371562(24)

34 610,7(22)

68,9(4) года

0+

233U

92

141

233,0396352(29)

36 920,0(27)

1,592(2)·105 лет

5/2+

234U

92

142

234,0409521(20)

38 146,6(18)

2,455(6)·105 лет

0+

0,0055(2)

234Um[1]

1421,32(10)

39 567,9(18)

33,5(20) мкс

6−

235U

92

143

235,0439299(20)

40 920,5(18)

7,04(1)·108 лет

7/2−

0,7200(51)

235Um[1]

0,0765(4)

40 920,6(18)

26 мин

1/2+

236U

92

144

236,0455680(20)

42 446,3(18)

2,342(3)·107 лет

0+

236Um[1]

2750(10)

45 196(10)

115 нс

0+

237U

92

145

237,0487302(20)

45 391,9(19)

6,75(1) сут

1/2+

238U

92

146

238,0507882(20)

47 308,9(19)

4,468(3)·109 лет

0+

99,2745(106)

238Um[1]

2 557,9(5)

49 866,8(20)

280(6) нс

0+

239U

92

147

239,0542933(21)

50 573,9(19)

23,45(2) мин

5/2+

239Um[1]

20(20)#

50 594(20)

>250 нс

(5/2+)

239Un[1]

133,7990(10)

50 707,7(19)

780(40) нс

1/2+

240U

92

148

240,056592(6)

52 715(5)

14,1(1) ч

0+

241U

92

149

241,060330(320)#

56 200(300)#

5# мин

7/2+#

242U

92

150

242,062930(220)#

58 620(200)#

16,8(5) мин

0+

Примечание:

Распространённость изотопов приведена для большинства природных образцов. Для других источников значения могут сильно отличаться.

Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида.

Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Z и N). Неуверенно определённые значения спина и/или его чётности заключены в скобки.