Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОЛЕКУЛЯРНАЯ ФИЗИКА (20-29).docx
Скачиваний:
181
Добавлен:
24.03.2015
Размер:
324.3 Кб
Скачать

Частные случаи первого закона термодинамики для изопроцессов

При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:

При изотермическом процессе количество теплоты, переданное газу от нагревателя, полностью расходуется на совершение работы:

При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:

Адиабатный процесс - термодинамический процесс в теплоизолированной системе.

Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.

Формула КПД теплового двигателя: Здесь Q1 - количество теплоты, полученное рабочим телом, Q2 - количество теплоты, отданное холодильнику. A - полезная работа. Формула Карно для оценки максимального КПД теплового двигателя:

22.Теплоемкость.Теплоемкость идеального газа при постоянном давлении и при постоянном объеме. Уравнение Майера

Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяющая отношение бесконечно малого количества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT[1]:

Единица измерения теплоёмкости в Международной системе единиц (СИ) — Дж/К

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c

c = Q / (mΔT).

Во многих случаях удобно использовать молярную теплоемкость C

C = M · c,

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: CV– молярная теплоемкость в изохорном процессе (V = const) и Cp – молярная теплоемкость в изобарном процессе(p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует 

QV = CV ΔT = ΔU.

Изменение ΔU внутренней энергии газа прямо пропорционально изменению ΔT его температуры.

Для процесса при постоянном давлении первый закон термодинамики дает: 

Qp = ΔU + p (V2 – V1) = CV ΔT + pΔV,

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует: 

Отношение ΔV / ΔT может быть найдено из уравнения состояния идеального газа, записанного для 1 моля: 

pV = RT,

где R – универсальная газовая постоянная. При p = const

или 

Таким образом, соотношение, выражающее связь между молярными теплоемкостями Cp и CV, имеет вид (формула Майера): 

Cp = CV + R.

Молярная теплоемкость Cp газа в процессе с постоянным давлением всегда больше молярной теплоемкости CV в процессе с постоянным объемом (рис. 3.10.1).

Рисунок 3.10.1.

Два возможных процесса нагревания газа наΔT = T2 – T1. При p = const газ совершает работуA = p1(V2 – V1). Поэтому Cp > CV

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ. 

МАЙЕРА УРАВНЕНИЕ - ур-ние, устанавливающее связь между теплоёмкостями при пост, давлении Cp и пост, объёме СV 1 кмоляидеального газа: где R - газовая постоянная .Впервые было получено Ю. P. Майером (J. R. Mayer) в 1842 и ещё до работ Дж. П. Джоуля (J. P. Joule) использовано им для количеств, определения механического эквивалента теплоты. Для произвольной массы т (кг) вещества в состоянииидеального газа M. у. записывается в виде: , где - молекулярная масса газа. M. у. можно получить из общего соотношения (см. Термодинамика ),если учесть, что для идеального газа справедливо Клапейрона уравнение.