Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практику по физич. и коллоид. химии.doc
Скачиваний:
151
Добавлен:
24.03.2015
Размер:
5.12 Mб
Скачать

Практическое применение электрической проводимости.

  1. Определение fэ сильных электролитов:

  1. Определение константы и степени диссоциации слабых электролитов:

В не слишком разбавленных растворах величина у слабых кислот и оснований очень мала, и можно считать, что 1 -1. Тогда получаем:

K=2Cи=

Это уравнение дает простой способ подсчета степени электролитической диссоциации слабого электролита в растворе данной концентрации, когда константа К известна.

3. Определение солесодержания в растворе электролита:

1000 = Сi (k + a)

Сi= 1000 /k+a

4. Определение растворимости труднорастворимых солей.

По закону действующих масс для бинарного электролита можно записать:

[K+] [A-] =K[KA] = ПР,

где ПР – произведение растворимости. ПР = constпри Т =const

Если соединение диссоциирует нацело, то

[K+] = [A-] =ПР = С (моль/л)

ПР и С определяют из данных насыщенного раствора электролита.

Пример: AgCl

Сначала измеряют дистиллированной воды ( =1,510-6См/м).

насыщенного раствора AgClравна 2,7510-6См/м.

Следовательно:

(AgCl) = 2,7510-6- 1,510-6= 1,2510-6См/м

Электролитические подвижности ионов Ag+иCl-равны соответственно 53,8 и 65,2, а молярная электрическая проводимость при бесконечном разбавлении:

=Ag+Cl= 53,5 + 65,2 = 119,0 См/м2

Так как

= V;

то определяем V, содержащий 1 мольAgCl:

Число молей в 1 литре равно:

Биологическое значение.

Явления электрической проводимости в тканях растительных и животных организмов имеют большое физиологическое значение.

Электрическая проводимость разных тканей и биологических жидкостей неодинакова: наибольшей электрической проводимостью обладают спинномозговая жидкость, лимфа, желчь, кровь; хорошо проводят ток также мышцы, подкожная клетчатка, серое вещество головного мозга. Значительно ниже электрическая проводимость легких, сердца, печени. Очень низка она у жировой ткани, нервной, костной. Хуже всего проводит электрический ток кожа (роговой слой). Сухой эпидермис почти не обладает электропроводностью.

Жидкость межклеточных пространств гораздо лучше проводит ток, чем клетки, оболочки которых оказываются существенным препятствием при движении многих ионов. Измерение электрической проводимости широко применяется при изучении изменения проницаемости в живых клетках. Возрастание электрической проводимости клетки означает, что ионы проходят через клетку с большей легкостью. При малых изменениях электрической проводимости процесс обратим, но если изменение электрической проводимости слишком увеличивается в сторону возрастания или убывания, то процесс становится необратимым и наступает смерть организма. По величине электрической проводимости биологических жидкостей можно определить их сопротивление. Электрическое сопротивление нормальных водорослей почти в 10 раз больше сопротивления морской воды, тогда как мертвая ткань имеет сопротивление почти равное сопротивлению морской воды. Вообще Са++понижает проницаемость, аMg++,Na+,K+ее увеличивают.

Изучение электрической проводимости растворов называют кондуктометрией. Кондуктометрические методы анализа основаны на зависимости между электрической проводимостью растворов и концентрацией ионов в растворе.

Кондуктометрическое титрование – метод анализа, основанный на определении содержания вещества по излому кривой титрования. Кривую строят по измерениям удельной электрической проводимости анализируемого раствора, изменяющейся в результате химических реакций в процессе титрования.

Кондуктометрические методы по сравнению с другими методами анализа имеют некоторые преимущества. Они дают возможность:

- без больших затруднений проводить определения не только в прозрачных, но и в окрашенных и мутных растворах, а также в присутствии окислителей и восстановителей, ограничивающих применение органических индикаторов в других методах;

- осуществлять определения разнообразных неорганических и органических индивидуальных соединений;

- анализировать не только сравнительно концентрированные растворы, но и разбавленные до 10-4М;

- проводить исследования не только водных, но и не водных и смешанных водно-органических растворов;

- сравнительно легко осуществлять автоматизацию процессов титрования;

- широко использовать разнообразные типы реакций (нейтрализации, осаждения, комплексообразования, окисления-восстановления, замещения, конденсации, омыления и т.п.), сопровождающихся изменением электрической проводимости анализируемых растворов;

- во многих случаях избежать предварительного отделения примесей, обычно мешающих определению другими методами;

- просто и точно определять конечную точку титрования по пересечению двух прямых и соответственно вычислять точку эквивалентности;

- использовать переменный ток низкой частоты и постоянный ток;

- производить дифференцированное титрование смесей электролитов, что невозможно осуществить другими методами.

Кондуктометрические методы анализа применяются в промышленности для осуществления непрерывного химико-аналитического контроля производства, определения концентрации солевых растворов, содержание солей в минеральной, морской и речной воде, для контроля процесса очистки и качества воды, оценки загрязненности сточных вод, для определения следов воды в неводных растворителях, газах, твердых солях, целлюлозе, бумаге, зерне, для определения влажности зерна и почвы.

Кондуктометрические методы также применяются для анализа окружающей среды, качественного определения различных газов (СО2, СО, О2,NH3,SO2,H2Sи др.), содержание вредных примесей в воздухе, воде, пищевых продуктов, для контроля качество молока, вин, напитков, фруктовых соков.

Кондуктометрическое титрование используется для определения индивидуальных сильных, слабых и очень слабых неорганических и органических карбоновых кислот, амино-, галогено- и оксикислот, фенолов и их производных, фармацевтических препаратов, дигуанидина, гуминовых кислот, аминов, четвертичных аммониевых оснований и т.д.

Кондуктометрическое титрование применяется также для анализа многокомпонентных смесей, кислот, оснований, солей, образованных сильными кислотами (основаниями) и слабыми основаниями (кислотами), разнообразных катионов и анионов, окислителей и восстановителей, комплексующихся агентов, смесей минеральных, монокарбоновых и поликарбоновых кислот, смесей оснований и солей слабых кислот, смесей кислот и солей слабых оснований и т.д.