Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Практику по физич. и коллоид. химии.doc
Скачиваний:
151
Добавлен:
24.03.2015
Размер:
5.12 Mб
Скачать

Потенциометрический метод определения рН.

В настоящее время наиболее распространен потенциометрический метод определения рН, поскольку он является наиболее точным и быстрым. Метод основан на измерении ЭДС гальванической цепи, составленной из электрода, обладающего водородной функцией, и электрода сравнения. Существует ряд электродов, обладающих водородной функцией (водородный, хингидронный, стеклянный), но в настоящее время в лабораторной практике широко применяется стеклянный электрод с водородной функцией, т.к. он обладает рядом преимуществ. Например, одним из преимуществ стеклянного электрода является то, что он позволяет определять рН раствора любого химического соединения в достаточно широком диапазоне значений.

Схематически стеклянный электрод, обладающий водородной функцией, записывается следующим образом:

Ag|AgCl, 0,1нHCl|| .

Для измерения рН раствора составляют цепь из стеклянного и хлорсеребряного электродов. Хлорсеребряный электрод является электродом сравнения. Таким образом, стеклянно-хлорсеребряная цепь записывается так:

Ag|AgCl, 0,1н НСl|| |KClнасыщ,AgCl|Ag.

Величина потенциала стеклянного электрода (ст) связана с концентрацией Н+- ионов исследуемого раствора уравнением Нернста:

или

Н+ст.=Н+ст.+ 0,0579lgаН+

где: 0ст– потенциал асимметрии стеклянного электрода, величина переменная (в отличие от металлов) и поэтому требующая корректировки по буферным растворам.

Расчет рН растворов при использовании стеклянно-хлорсеребряной цепи потенциометрическим методом заключается в следующем. ЭДС любой гальванической цепи равна разности электродных потенциалов:

Е = Н+ст.-хл.

подставим в данное уравнение значение электродного потенциала стеклянного электрода:

Е = Н+ст.+ 0.0579lgаН+-хл.

решим данное уравнение относительно рН:

-0.0579 lgаН+=Н+ст.-хл.– Е

а т.к. -lgаН+= рН , то

рН = Н+ст.-хл.– Е / 0,0579

Биологическое значение.

Каждый ион играет особую роль в биологических и химических процессах, однако, водородные ионы занимают особое положение среди всех других ионов. Так, активность ферментов, при помощи которых осуществляется синтез и разложение химических веществ в живой клетке, состоит в непосредственной зависимости от концентрации ионов водорода. Каждый фермент имеет определенную величину рН, оптимальную для его действия, например:

Таблица 4

Оптимальные рН сред для действия некоторых ферментов

Название ферментов

Оптимум рН

Диастаза солоды

4.9

Сахароза дрожжей

4.5

Сахароза животных

6.0-8.0

Лактаза

7.0

Липаза желудочного сока

4.0-5.0

Каталаза крови

7.0

Пепсин при действии на яичный альбумин

1.2-1.6

Трипсин при действии на казеин

6.0-6.5

Концентрация ионов водорода имеет большое значение в жизнедеятельности микроорганизмов. Установлено, например, что дифтерийный микроб лучше развивается при рН в пределах 7,3-7,6, микроб кишечной палочки при рН = 6-7.

В прямой зависимости от рН находится деятельность почвенных микроорганизмов. Например, активная фиксация азота микробами наблюдается при рН =7,2.

Отношение высших растений к рН почвы также различно. Так, например, овес, репа, картофель, рожь дают наивысшие урожаи при рН около 5; пшеница, ячмень, свекла, люцерна лучше развиваются при нейтральной реакции почвы или даже слабо щелочной.

По видовому составу луговой растительности можно определить рН почвы – присутствие растения «щучки» (Deschampsiaflexuosa) указывает на рН почвы – 3,5-3,9; преобладание осоки (Carex) на рН в пределах 4,5-4,9; преобладание «мать-мачехи» (Tussilfgofarfara) на рН 7,5-7,9 и т.д.

Концентрация ионов водорода имеет большое значение для развития растений. Давно известно, что на кислых почвах многие растения развиваются слабо. Агрономы применяют известкование с целью повышения плодородия почв. Концентрация водородных ионов почв оказывает влияние не только на процессы жизнедеятельности растений, но и на распределение и активность микроорганизмов, населяющих почву, и даже на физико-химическое состояние почвенных коллоидов.

Искусственно изменяя рН среды, например, внесением в почву извести или суперфосфата, мы можем регулировать и изменять бактериальное население почвы, способствовать ее нитрификации и т.д.

рН водной среды является мощным фактором, влияющим на распространение водных организмов. Наиболее благоприятной для жизнедеятельности организмов водной средой является нейтральная или слабощелочная. Реакция воды в пресных водоемах и морях зависит от целого ряда факторов, но все они сводятся к буферному действию. Буферами в море и реках являются угольная кислота, бикарбонаты и карбонаты. рН поверхностных слоев морей и океанов поэтому колеблется незначительно, в пределах 8,1-8,3

В природе есть ряд стоячих водоемов, отличающихся ярко выраженной кислой реакцией. Это – сфагновые болота и озера. Интенсивные процессы гниения, происходящие там, обилие гуминовых веществ, создают среду с рН ниже 5,0, здесь накапливаются минеральные кислоты, например, такая сильная как серная.

Различные водные организмы обладают неодинаковой выносливостью к тем или иным колебаниям рН среды. Например, главная масса пресноводных организмов – инфузории, коловратки, планарии, ракообразные и т.д. выдерживают только нейтрально-щелочные воды в диапозоне рН от 5 до 10. К этой группе организмов следует отнести и все морские организмы.

Функциональная деятельность отдельных органов и тканей высших животных также находится в зависимости от концентрации водородных ионов. Так, у лягушки, при изменении рН крови от 7,5 до 6,5 происходит резкое ослабление сердечной деятельности, а при рН = 6 сердце перестает работать. Изменение рН крови выше 7,3 вызывает сужение сосудов, а ниже – расширение сосудов. При изменении рН в кислую сторону перистальтика кишечника усиливается. Резко реагирует на изменение рН нервная система. Изменения концентрации ионов водорода могут происходить при различных заболеваниях, причем рН крови может смещаться в кислую – ацидозили в щелочную среду –алкалоз.

рН крови высших животных и человека поддерживается мощными буферными системами – такими как гем-гемоглобин, оксигемоглобин, белковыми, бикарбонатными. Ниже приводятся показатели концентрации водородных ионов крови, соков и жидкостей организма (таблица 5).

Под влиянием водородных ионов изменяются основные физико-химические свойства веществ и растворов: растворимость, фильтрация, диализ, поверхностное натяжение, вязкость, устойчивость, осмотическое давление, набухание и т.д. Вот почему определение концентрации водородных ионов нашло применение во всех областях химии, биологии, физиологии, бактериологии, медицины, сельского хозяйства и техники.

объект исследования

рН

Объект исследования

рН

Кровь животных:

бык

кролик

Собака (сыворотка крови)

Лошадь

Свинья

Баран (сыворотка крови)

Коза (сыворотка крови)

Овца

7.36-7.40

7.33-7.35

7.30

7.40-7.60

7.85-7.95

7.82

7.65

7.40-7.58

6.02

Мышечный сок

Слюна лошади

Слюна коровы

Желудочный сок собаки

Желчь

Молоко коровы

Моча коровы

Моча лошади

Пот лошади

Содержание тонких кишок кур

7.56

8.10

0.96-080

7.0-8.0

6.2

8.5-8.7

7.4-8.7

7.8-8.9

5.5-6.3

Таблица 5