Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторные по кристаллооптике 2008 / Основные сведения из кристалографии.doc
Скачиваний:
89
Добавлен:
25.03.2015
Размер:
388.1 Кб
Скачать

Симметрия структуры кристаллов. Сочетания элементов симметрии структур

В структуре кристаллов к конечным преобразованиям симметрии, входящим в точечную группу симметрии, добавляются еще бесконечные симметрические преобразования.

Основное бесконечное преобразование - трансляция, т.е. беско­нечно повторяющийся перенос вдоль одной прямой на одно и тоже опре­деленное расстояние называемое периодом трансляции. Сочетание трансляций с каждым из элементов симметрии генерирует новые элементы симметрии, бесконечно повторяющиеся в пространстве. Так, совокупность совместно действующих плоскости симметрии и параллельного ей переноса на величину равную половине периода трансляции вдоль плоскости - это плоскость скользящего отражения. Симметрическое преобразование плоскостью скользящего отражения можно описать, указав, как при этом изменяются координаты произвольной точки X, Y, Z. Совокупность оси симметрии и переноса вдоль этой оси, действующих совместно дает винтовую ось симметрии. Винтовые оси в кристаллическом прост­ранстве могут быть только порядков 2,3,4 и 6. Различают левые и правые винтовые оси.

Для каждой структуры характерен ее набор элементарных трансляций или трансляционная группа, которая определяет пространственную решетку.

В зависимости от отношения величин и взаимной ориентации трех основ­ных трансляций а, в, с получаются решетки, отличающиеся друг от друга по своей симметрии. Симметрия органичивает число возможных решеток. Все кристаллические структуры описываются 14 трансляционными группами, со­ответствующими 14 решеткам Бравэ. Решеткой Бравэ называется бесконечная система точек, которая образуется трансляционным повторением одной точки.

14 решеток Бравэ отличаются друг от друга по форме элементарных ячеек и по симметрии и подразделяются на 6 сингоний (см. таблицу).

Элементарные ячейки в решетках Бравэ выбираются так, чтобы 1) их симметрия соответствовала симметрии всей решетки (точнее; она должна совпадать с симметрией голоэдрического класса той системы, к которой относится кристалл), 2) число прямых углов и равных сторон было мак­симальным и 3) объем ячейки минимальным.

В структуре кристалла решетки Вравэ могут быть вставлены одна в другую, а в узлах различных решеток могут стоять как одинаковые, так и различные атомы, как сферически симметричные, так и имеющие реальную кристаллографическую симметрию. Все типы структур описываются 230 пространственными группами симметрии, которые образуются из сочетаний элементов симметрии бесконечных структур. (Пространственной группой симметрии называется сочетание всех возможных преобразований симметрии кристаллической структуры).

Умножение элементов симметрии структур подчиняется теоремам 1-6. Кроме того, из-за добавления бесконечных повторений появляются новые сочетания.

Теорема 7. Последовательное отражение в двух параллельных плоскостях симметрии эквивалентно трансляции на параметр t=2а, где а-расстояние между плоскостями..

Теорема 7а. Любую трансляцию t можно заменить отражением в двух параллельных плоскостях, относящихся друг от друга на расстояние T/ 2.

Теорема 8. Плоскость симметрии и перпендикулярная к ней трансляция с параметром t порождают новые "вставленные" плоскости симметрии, параллельные порождающей, аналогичные ей по типу и отстоящие от нее.

Теорема 9. Плоскость симметрии и трансляция t, составляющая с плоскостью угол , порождают плоскость скользящего отражения, параллельную порождающей и отстоящую от нее в сторону трансляции на величину(t/2), sinвеличина скольжения вдоль порожденной плоскости равнаt*cos

Теорема 10. Ось симметрии с углом поворота и перпендикулярная к ней трансляция Т порождает такую же ось симметрии, параллельную данной, обстоящую от нее на расстояние (t/2) sin() и расположенную на линии, перпендикулярной к трансляцииt в ее середине.

Теорема 11. Винтовая ось симметрии с углом поворота и переносом t и перпендикулярная к ней трансляция t порождают винтовую ось с тем же углом и тем же переносом, параллельную данной, отстоящую от нее на(t/2) sin(/2) и расположенную на линии, перпендикулярной к трансляции t в ее середине.

Теорема 12. Ось симметрии с углом поворота и трансляция t составляющая с ней угол , порождают винтовую ось симметрии.

Теорема 13. Винтовая ось симметрии с углом поворота и переносом t1 и трансляция t, составляющая с осью угол порождает винтовую ось симметрии с тем же углом поворота.

Теорема 14. Инверсионно- поворотная ось с углом поворота и перпендикулярная к ней трансляция порождают ту же инверсионно -поворотную ось, параллельную порождающей.

Теорема 15. Инверсионно - поворотная ось с углом поворота и трансляция , составляющая с этой осью угол , порождают инверсионную ось с тем же поворотом параллельную данной.

ЗАДАЧИ

1. Записать матричное представление всех операций симметрии, вхо­дящих в точечную группу mmm.

2. Найти матричное представление и порядок группы симметрии низко­температурной модификации кварца.

3. Известна теорема Эйлера: равнодействующей двух пересекающихся осей симметрии является третья ось симметрии, проходящая через точку пересечения первых двух. Пользуясь матричным представлением элементов симметрии, проиллюстрировать теорему Эйлера на примере класса 4 2 2.

4. Кристалл поворачивают на 90° с последующим отражением в центре инверсии, затем поворачивают на 180° вокруг направления, перпендику­лярного оси первого поворота. Найти матричное представление опера­ции симметрии, которая приводит к тому же результату.

5. Кристалл поворачивают на 120°, затем отражают в центре инверсии. Найти матричное представление операции симметрии, которая приводит к тому же результату. В группу какого элемента симметрии входит эта операция?

Все сведения о кристаллах, необходимые для решения задач, см. в таблицах, помещенных в конце описания.

6. Используя матричное представление элементов симметрии, найти такую операцию симметрии, действие которой давало бы тот же результат, что и действие двух осей второго порядка, пересекающихся под углом 90°.

7. Найти матричное представление операции симметрии, действие которой дает тот же результат, что и действие осей второго порядка, расположенных под углом 60° друг к другу. В группу какого элемента симметрии входит эта операция?

8. Найти матричное представление и порядок точечной группы симметрии дигидрофосфата калия (КДР) для стандартного и нестандартного (4m2) выбора кристаллофизических осей координат.

9. Найти матричное представление точечной группы симметрии 6 2 2.

10. Найти матричное представление и порядок группы 6.

11. Пользуясь матричным представлением операций симметрии, проверить справедливость теоремы ЭЙЛЕРА НА ПРИМЕРЕ точечной группы 2 2 2,

12. Убедиться в справедливости теоремы Эйлера на примере осей второго порядка, располагающихся под углом 45° друг к другу.

13. Каков порядок следующих групп симметрии: m т , 2 2 2, 4 m m, 422?

14. Записать систему генераторов для группы 4/mmm.

15. На примере точечной группы симметрии 2/m проверить, выполняются ли все групповые аксиомы.

16. Используя матричное представление операций симметрии, проверить справедливость теоремы: сочетание оси четного порядка и перпендикулярной ей плоскости дает центр симметрии.

17. Доказать, что в кристаллической решетке отсутствует ось симметрии пятого порядка.

18. Чему равно число атомов в элементарной ячейке в случае а) простой, б) объемноцентрированной и в) гранецентрированной кубических решеток?

19. Чему равно число атомов в элементарной ячейке гекcагональной плотноупакованной решетки?

20. Определить отрезки, которые отсекает на осях решетки плоскость (125).

21. Найти индексы плоскостей, проходящих через узловые точки кристаллической решетки с координатами 9 10 30, если параметры решетки а=3, b =5 и с==6.

22. Даны грани (320) и (11О). Найти символ ребра их пересечения,

23. Даны два ребра [1ЗО] и [201]. Найти символ грани, в которой они лежат одновременно.

24. Положение плоскостей в гексагональной системе определяется с помощью четырех индексов. Найти индекс i в плоскостях (100), (010), (110) и (211) гексагональной системы.

25. Элементарная ячейка магния принадлежит к гексагональной системе и имеет параметры a=3,20 и с=5,20.Определить векторы обратной решетки.

26. Выразить углы между векторами обратной решетки через углы прямой решетки.

27. Показать, что решетка, обратная кубической объемноцентрированной, будет кубической гранецентрированной.

28. Найти векторы обратной решетки для кристалла кальцита (СаСО3), если a=6,36 , =46°6'.

29. Доказать, что расстояние между плоскостями (hkl) решетки кристалла равно обратной величине длины вектора r*hkl из начала координат в точку hkl обратной решетки.

30. В триклинной решетке кианита (Al2O3, SiO2) параметры a, b, c и углы , , элементарной ячейки соответственно равны 7,09; 7,72; 5,56 и ; 90°55 ; 101°2; 105°44 . Определить расстояние между плоскостями (102).

31. Чему равны расстояния между плоскостями (100), (110) и (111) в кубической решетке с параметром a

32. Определить угол между плоскостями (201) и (310) в ромбической сере с параметрами решетки a=10,437 ,b=12,845 и,С. =24,369

33. Вычислить угол между плоскостями (111) и (102) тетрагонального кристалла галлия с параметрами решетки a=4,50 ,c= 7.64 8.

34. Найти угол, образуемый гранями (100) и (010) кубического кристалла.

35. Доказать, что в кубическом кристалле любое направление [hkl]перпендикулярно к плоскости (hkl) с теми же значениями индексов Миллера.

36. Определить угол между телесной диагональю и ребром куба.

37. Определить угол между двумя направлениями [102] и [210] в кристалле триглицинсульфата ((NH2CH2COOH)3*H2SO4) с параметрами элементарной ячейки a=9,42,b=12,64,c=5,73 и углом моноклинности=ПО°23 .

38. Вычислить угол между двумя прямыми [101] и [012] в ромбической решетке медного купороса с параметрами решетки a =4,88 ,b=6,66 и. С =8,32.