Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Происхождение многоклеточных

.doc
Скачиваний:
136
Добавлен:
29.03.2015
Размер:
243.71 Кб
Скачать

Происхождение многоклеточных животных

Проблема происхождения многоклеточных животных представляет интерес не только для зоологии, но имеет большое общебиологическое значение. Многоклеточность представляет ту морфо-анатомическую основу, на которой формируется колоссальное разнообразие планов строения, жизненных форм и эволюционных потенций. Таким образом, знание путей и причин формирования многоклеточности у животных является ключом к пониманию многих важных зоологических и общебиологических вопросов.

В силу своего исключительного значения проблема происхождения многоклеточных животных издавна привлекала внимание исследователей. По этому поводу высказано немало гипотез, большинство их которых в настоящее время представляют исторический интерес, как любопытные примеры становления зоологической мысли. Все эти гипотезы группируются в четыре категории.

Первую группу составляют гипотезы, предполагающие независимое происхождение простейших и многоклеточных животных. К их числу относятся представления С. Авернцева (1910) и А.А. Заварзина (1945). По мнению этих авторов, еще на заре существования жизни на Земле первичное живое вещество (первородная слизь), еще не имевшее клеточной структуры, в одном случае приобрело организацию простейших, в другом – сразу многоклеточное строение. Подобные предположения противоречат как фундаментальному общебиологическому обобщению – клеточной теории, так и сравнительно-цитологическим данным, указывающим на исключительное сходство тонких клеточных структур Protozoa и Metazoa, которые едва ли могли возникнуть независимо.

Вторая группа представлена гипотезами, выводящими многоклеточных непосредственно от одиночных простейших. В частности, такой точки зрения придерживались Г. Иеринг (1877), А.А. Тихомиров (1887), И. Хаджи (1944), О. Штейнбок (1963) и другие авторы. Суть этих гипотез состоит в том, что многоклеточные животные произошли от крупных, высокоразвитых и сложноорганизованных простейших путем так называемой целлюляризации, т.е. единовременного разделения тела простейшего на множество специализированных клеток.

Подобное предположение, несмотря на всю его фантастичность с современных позиций, имеет определенные сравнительно-анатомические и эмбриологические основания. Так, некоторые инфузории по сложности организации, как минимум, не уступают низшим многоклеточным, таким, как бескишечным турбелляриям. Гипотезы целлюляризации исходят из того, что высокоспециализированные структуры инфузорий дали начало специализированным тканям и органам многоклеточных животных.

Эмбриологическим основанием гипотезы целлюляризации служит поверхностное дробление яиц членистоногих. При таком типе дробления деление ядер сперва не сопровождается делением цитоплазмы. Клеточные границы появляются одновременно и сравнительно поздно.

Гипотезы целлюляризации подверглись решительной критике со стороны В.А. Догеля, В.Н. Беклемишева, А.А. Захваткина, А.В. Иванова, О.М. Ивановой-Казас и других крупных зоологов. Суть этой критики, вкратце, состоит в следующем.

Во-первых, ее авторы указали на несостоятельность эмбриологического аргумента. Дело в том, что членистоногие – это животные, далеко отстоящие от истоков многоклеточности, и потому едва ли могли сохранить примитивные формы развития. Дробление яйца членистоногих, вне всякого сомнения – это результат далеко зашедшей специализации. Низшие же многоклеточные имеют совершенно иной ход онтогенеза.

Кроме того, исходя из гипотезы целлюляризации, в онтогенезе многоклеточного животного все ткани должны были бы дифференцироваться сразу после синцитиального дробления, и прямо на месте. В действительности же в ходе индивидуального развития многоклеточных (при гаструляции и органогенезе) наблюдаются последовательная дифференциация и значительные перемещения клеточных масс.

Во-вторых, высокоорганизованные простейшие – это слишком специализированные существа, чтобы дать начало животным с организацией принципиально иного типа. Подобное предположение противоречит одному из фундаментальных законов эволюции, гласящем, что у истоков эволюционно молодой группы организмов всегда находится не самый совершенный представитель из числа эволюционных предшественников.

В-третьих, гипотезы целлюляризации не имеют экологического обоснования. В этой связи, разделение тела простейшего на клетки выглядит беспричинным.

Третья группа гипотез выводит многоклеточных от колониальных простейших.

Среди них исторически первой явилась гипотеза гастреи знаменитого немецкого зоолога Эрнста Геккеля (1874), на длительный период завоевавшая большую популярность среди специалистов. В основу этой гипотезы Э. Геккель положил тот факт, что все многоклеточные животные в своем развитии обязательно проходят двуслойную стадию – гаструлу. Опираясь на биогенетический закон Геккеля-Мюллера (онтогенез есть краткое повторение филогенеза), Геккель предположил, что каждая стадия индивидуального развития многоклеточного животного повторяет (рекапитулирует) соответствующую стадию предковой формы. Так, стадии зиготы в филогенезе соответствует стадия одноклеточного организма, стадии морулы1 (поздняя стадия дробления в виде плотного зачатка) отвечает морея – колония простейших в виде шаровидного скопления, стадии бластулы – колония простейших в виде полого шара, подобного современному Volvox – бластея. Впячивание (инвагинация) части стенки шаровидной колонии, по Геккелю, привело к образованию двуслойного животного – гастреи, отвечающего стадии инвагинационной гаструлы. Наружный слой клеток гастреи (эктодерма) выполнял функции кожного покрова, внутренний слой (энтодерма) играл роль кишечника. Бластопор выступал в качестве ротового отверстия (рис. 1). Среди современных Мetazoa ближе всего к гастрее Геккеля стоят наиболее примитивные представители кишечнополостных, которых Геккель положил в основу всего филогенетического древа многоклеточных животных.

Рис. 1. Происхождение многоклеточных животных по Геккелю.

Гипотеза гастреи Геккеля имела важное историческое значение, способствуя утверждению эволюционной идеи и крушению «теории типов» Ж. Кювье. Однако она была не свободна и от ряда принципиальных недостатков. К их числу относится, прежде всего, отсутствие сколь бы то ни было внятного экологического и физиологического обоснования процесса инвагинации.

Гипотеза гастреи Геккеля не осталась в одиночестве. Повинуясь зову моды, оригинальные гипотезы колониального происхождения многоклеточных животных предлагали многие ученые. Среди них я упомяну Ланкастера с его «теорией планулы» (1877) и Бючли с «теорией плакулы» (1884). Эти представления имеют в настоящее время лишь узкоспециальный исторический интерес, поэтому на них специально останавливаться не будем.

Весьма обстоятельную критику теории гастреи Геккеля дал И.И. Мечников (1886). Так, он убедительно продемонстрировал, что инвагинация не могла быть исторически первым способом образования двуслойной организации многоклеточных. Дело в том, что примитивным многоклеточным присущ совершенно другой механизм гаструляции, а именно мультиполярная иммиграция. Инвагинация же в филогенетическом аспекте появилась гораздо позднее, как результат прогрессивной эволюции онтогенеза многоклеточных. Кроме того, данные сравнительной физиологии однозначно указывают на вторичный характер полостного пищеварения, которому предшествовало внутриклеточное. Следовательно, по мнению И.И. Мечникова, едва ли первичные многоклеточные, подобно геккелевской гастрее, могли иметь кишечник и ротовое отверстие.

В качестве альтернативы гипотезе Геккеля, И.И. Мечников предложил оригинальную теорию, получившую название теории фагоцителлы (1886). Она достаточно хорошо обоснована и, в несколько модернизированном виде, сохраняет свое значение и в настоящее время.

При разработке теории фагоцителлы И.И. Мечников исходил из следующих соображений.

  1. Предками многоклеточных животных могли быть одноклеточные с анимальным типом питания, то есть представители подцарства Protozoa.

  2. Многие жгутиконосцы при определенных условиях (в частности, во время захвата пищи) могут принимать амебоидную форму.

  3. Внутриклеточное пищеварение в ходе эволюции возникло раньше полостного, следовательно, первичные многоклеточные едва ли имели кишечник, равно как и ротовое отверстие.

  4. Наиболее примитивными способами гаструляции выступают мультиполярная иммиграция и смешанная деламинация; филогенетические пути становления двуслойной организации должны были быть аналогичными.

Исходной стадией развития многоклеточных животных И.И. Мечников полагал шаровидную колонию жгутиконосцев, все особи которой располагались у ее поверхности одним слоем. Жгутики служили для плавания колонии и содействовали захвату пищевых частиц, организуя водовороты (так называемый седиментационный способ питания). Клетки, захватившие пищевую частицу, отбрасывали жгутик, принимали амебоидную форму и устремлялись внутрь колонии, где предавались перевариванию пищи. Завершив пищеварение и проголодавшись, они восстанавливали жгутик и возвращались на поверхность.

Впоследствии, по мнению И.И. Мечникова, исходно однородные особи колонии разделились на два пласта – кинобласт с локомоторной функцией, и фагоцитобласт с функцией трофической. Этот гипотетический организм напоминал личинок низших многоклеточных, известных под названием паренхимулы. Поэтому И.И. Мечников назвал это существо, по сложившейся зоологической традиции, паренхимеллой. Однако, имея в виду тот факт, что паренхимула является чисто расселительной стадией и самостоятельно не питается, передумал и предложил другое название – фагоцителла (делая тем самым акцент на внутриклеточном пищеварении этого животного).

Теория И.И. Мечникова, оказавшись в тени гипотезы гастреи Геккеля, должного признания не получила, а затем и вовсе была незаслуженно забыта. Лишь спустя полвека она была восстановлена в правах благодаря трудам В.Н. Беклемишева, А.В. Иванова, А.А. Захваткина и А.А. Заварзина. В настоящее время идеи И.И. Мечникова лежат в основе общепризнанных представлений о происхождении многоклеточных животных, о чем будет сказано ниже.

Четвертая группа гипотез предполагает происхождение многоклеточных животных от многоклеточных растений. Сформулировать подобные взгляды отважились Франц (1919, 1924) и Харди (1953).

Так, Франц предположил, что многоклеточные животные происходят от бурых водорослей, а именно от фукусов. Главные сходства, которым Франц придал абсолютное филогенетическое значение, заключаются в похожести жизненных циклов и более или менее одинаковом характере полового размножения.

Концепция Харди (1953) состоит в следующем. По мнению ее автора, переход к многоклеточному состоянию у растений протекает легче, чем у животных, поскольку общий характер питания многоклеточного растения – всасывание пищи всей поверхностью тела – сохраняется прежним. У животного же должен появиться новый способ питания, что чрезвычайно затрудняет переход к многоклеточному состоянию. В противном случае многоклеточность не дает животному никаких преимуществ.

Исходя из этих соображений, Харди предположил, что многоклеточные животные произошли от уже сформировавшихся метафитов, чем и преодолели вышеозначенные затруднения. Испытывая недостаток минерального питания, они начали питаться мелкими организмами, подобно тому, как это делают современные насекомоядные растения. В результате этих рассуждений у Харди появился простой полипообразный метазоон с пузыревидной полостью и щупальцами.

Гипотезы происхождения метазоев от метафитов настолько экзотичны, что останавливаться на их критическом анализе нет смысла.

Современные представления о происхождении многоклеточных животных

Современные представления о происхождении многоклеточных животных основаны на гипотезе фагоцителлы И.И. Мечникова, несколько модернизированной и дополненной с учетом более поздних открытий и идей.

Прежде чем попытаться реконструировать ход этого процесса, следовало бы задуматься: а зачем, собственно говоря, эта самая многоклеточность животным вдруг понадобилась? Существовали они на Земле миллиард лет, совершенствуясь в рамках одноклеточной организации, и вдруг занялись созданием «государства клеток»?

Специалистам хорошо известно, что всякое развитие выходит на качественно новый уровень тогда и только тогда, когда исчерпываются возможности развития в рамках старого качества. Другими словами, когда развитие упирается в некий «потолок», который не может быть преодолен на основе прежней организации. Это означает, что одноклеточное существо обладает некими принципиальными ограничениями, которые мешают ему совершенствоваться.

Анализ зоологического материала позволил установить, что к числу таких ограничений относятся, прежде всего, некоторые аллометрические зависимости. Известно, что эволюция жизни на Земле идет по пути усложнения, одним из проявлений которого является так называемый филогенетический рост – последовательное увеличение размеров организмов по мере их филогенетического развития.

У одноклеточных этот рост связан со многими факторами. Прежде всего, с необходимостью движения простейшего относительно среды. Дело в том, что снабжение простейших кислородом и удаление продуктов их жизнедеятельности происходит путем диффузии. В результате, одноклеточное существо очень быстро создает вокруг себя «пустыню», к тому же загаженную собственными выделениями. Поэтому для него жизненно важно сменить обстановку, т.е. переместиться из испорченного пункта «А» в свежий пункт «Б». Однако мелкий организм имеет колоссальное отношение поверхности к объему и, в силу этого, очень страдает от трения о воду. Другими словами, при активном движении он испытывает исключительно большое сопротивление среды. Причем это сопротивление пропорционально площади простейшего, а его локомоторная мощность – объему. Таким образом, увеличение линейных размеров простейшего, скажем, вдвое приведет к тому, что сопротивление плаванию возрастет в четыре раза, а мощность – в восемь раз. Или, что то же самое, удельная мощность (отношение мощности к силам трения) увеличится в два раза! В результате, возникает тенденция на увеличение размеров тела простейшего как эволюционный ответ на потребность в энергичном плавании.

Другая причина увеличения размеров – создавать в своем теле запас питательных веществ и резервной биомассы, что делает их относительно независимыми от колебаний жизненных ресурсов.

И, наконец, третья (но не последняя!) причина – филогенетический рост есть простое следствие усложнения организации. Когда различных морфологических структур много, им необходим более вместительный «контейнер».

Таким образом, в ходе прогрессивной эволюции простейшие обязаны увеличиваться в размерах. Может ли этот процесс идти бесконечно? И почему мы не вправе ожидать появления, скажем, сложно устроенного одноклеточного величиной со слона?

Дело в том, что функционирование одноклеточного существа, как и любого другого живого организма, основано на целесообразных реакциях на вызовы среды. У одноклеточных такие реакции управляются со стороны ядра. Например, в среде появилось некое вещество. Это вещество вступает в связь с рецепторами, находящимися на внешней поверхности клеточной мембраны, и в результате этого взаимодействия рецептор посылает ядру химический сигнал в виде какой-либо молекулы. Эта молекула достигает ядра и вызывает экспрессию нужного гена. В результате, клетка начинает синтезировать нужное вещество: ответ состоялся.

При увеличении размеров простейшего расстояние между клеточной мембраной и ядром увеличивается. Увеличивается и время реакции организма на внешние сигналы, и он, в конце концов, начинает безнадежно запаздывать, уподобляясь очень флегматичному и неповоротливому великану, беззащитному в быстро меняющейся обстановке.

Надо сказать, что с подобной проблемой живая природа сталкивалась не один раз. Сравнительно недавний пример: появление на Земле крупных динозавров, имеющих длину от носа до кончика хвоста свыше 20 метров. Учитывая, что скорость проведения нервного импульса у рептилий составляет величину того же порядка (30-40 метров в секунду), можно себе представить, как маленький, но дерзкий хищник изволил отобедать хвостом динозавра прежде, чем тот начал осознавать, что у него в тылу что-то происходит. Существует мнение, что именно в силу этих причин головной мозг гигантов был не крупнее теннисного мячика, тогда как основной объем нервной массы помещался в крестцовом отделе. Это «изобретение» уменьшало «плечо» рефлекторной дуги примерно вдвое, во столько же раз сокращая время «осмысления» динозавром тех событий, которые происходят с его хвостом.

Какой же выход из создавшейся ситуации нашли простейшие? Этот выход состоял в полиэнергидности: простейшее развило множество ядер, каждое из которых управляло собственной «провинцией» – прилегающим участком цитоплазмы.

Однако и этот выход оказался лишь полумерой, поскольку целостность получившегося организма была невелика. Простейшее разделилось на множество «автономий», а его координированное управление как единого целого затруднялась все теми же расстояниями между клеточной мембраной и глубоко лежащими частями клетки. В этом отношении простейшее уподобилось огромной и неповоротливой Российской империи середины XIX века, когда приказы из столицы, каковой в те времена был Петербург, передавались в удаленные губернии по конной эстафете. Стоит ли удивляться, что при такой постановке дела губернатор Камчатки узнал Крымской войне лишь спустя три месяца после ее начала, да и то это известие он получил не из Петербурга, а от английской эскадры, приступившей к бомбардировке Петропавловска-Камчатского с морского рейда.

Таким образом, общий план строения простейшего оказался чреват принципиальными ограничениями, которые в рамках одноклеточной организации не могут быть преодолены. Тем не менее, магистральная линия эволюции простейших от примитивных одноядерных диплоидных форм к полиплоидным и, далее, полиэнергидным представителям подцарства совершенно справедливо интерпретируется зоологами как тенденция к многоклеточности.

Коль скоро существуют проблемы, которые не получается разрешить в рамках одноклеточной организации, остается один путь – кооперация одноклеточных индивидов. Именно эти соображения лежат в основе современных представлений о возникновении многоклетчности у животных.

Согласно этим представлениям, предками многоклеточных животных явились довольно примитивные жгутиконосцы, сходные с современными представителями Choanophlagellata – воротничковыми жгутиконосцами. На их филогенетическую близость указывают сходства в ультратонком строении жгутика и кинетосомы, митохондрий, составе запасных питательных веществ, а также наличие воротничковых клеток или клеток с рудиментами воротничка в составе некоторых многоклеточных животных. К тому же, современные Choanophlagellata демонстрируют четко выраженную склонность к образованию различных колоний.

Первой стадией на пути к многоклеточности явилось объединение одиночных воротничковых жгутиконосцев в просто устроенную колонию типа Sphaeroeca – шаровидный агрегат клеток, ориентированных своими жгутиками наружу (рис. 2). Клетки колонии были совершенно одинаковыми в морфологическом и функциональном отношениях. Самое большее, на что могла быть способна такая колония в плане дифференциации клеток, это возникновения морфологического градиента, как это имеет место у современного Volvox – на функционально переднем его полюсе клетки мельче, и постепенно увеличиваются по направлению к функционально заднему полюсу.

Рис. 2. Происхождение многоклеточных животных по Иванову.

Что побудило одноклеточных индивидов к объединению в колонию? По-видимому, необходимость преодоления тех самых аллометрических ограничений, которые мешают простейшим плавать. Поверхность шаровидной колонии и, следовательно, ее трение о воду значительно меньше, чем совокупная поверхность составляющих ее индивидов, а локомоторная мощность колонии равна сумме локомоторных мощностей индивидов. Таким образом, кооперация простейших повышала эффективность плавания.

Сначала такая колония размножалась, по-видимому, только бесполым путем, распадаясь на отдельные клетки, каждая из которых давала начало новой колонии (так, как это происходит у современных Sphaeroeca). Для того чтобы колония могла развиваться как единое целое, должна была произойти первая дифференцировка клеток на половые и соматические. Точнее, в цикле развития предковой формы должно было появиться новое поколение, представленное половыми особями, подобно тому, как это наблюдается в колониях современных Volvox или Proterospongia. Специализированные половые клетки спасали колонию от постоянного разрушения, так как брали функцию размножения на себя. Колония получила возможность прогрессировать как единое образование, ее интеграция могла усиливаться от поколения к поколению и подчинять себе индивидуальность отдельных особей.

Вторая стадия – факультативная дифференциация колонии на функциональные группы клеток. Причина возникновения этой стадии – продолжающееся увеличение размеров колонии, в силу чего составляющие ее клетки разошлись по периферии, а внутри образовалось свободное пространство, заполненное студенистой массой. Поскольку жгутиковые клетки располагались на поверхности колонии, локомоторная мощность стала пропорциональной площади, и дальнейшее совершенствование локомоции за счет простого увеличения размеров оказалось невозможным – в данном отношении эволюция зашла в тупик. Зато у членов колонии появилась возможность чередовать разные фазы активности, оптимизируя выполнение той или иной функции поочередно. Так, клетки, находящиеся снаружи, выполняли локомоторную функцию в интересах всей колонии, и питались поодиночке, отфильтровывая из воды пищевые частицы, каждый для себя. «Нагрузившись» пищей, клетки утрачивали жгутик, приобретали амебоидную форму и уходили внутрь колонии, где сосредоточивались на переваривании пищи. Опять проголодавшись, клетки возвращались на поверхность, восстанавливали жгутик, и все начиналось сначала.

Третья стадия. Такое физиологическое обособление клеточных слоев явилось важной предпосылкой для постоянной морфологической дифференциации колонии. В конце концов, клеточная масса колонии подразделилась на два пласта, каждый из которых специализировался на выполнении тех или иных функций. Клетки наружного слоя – кинобласт – приняли на себя функцию локомоции и, частично, захвата пищи (с последующей ее передачей клеткам внутреннего слоя). Клетки внутреннего слоя – фагоцитобласт – приняли на себя трофическую функцию – захвата пищи с поверхности колонии и ее переваривания (с последующей передачей легко усваиваемых продуктов переваривания клеткам кинобласта). Таким образом, клеткам не надо было больше сменять друг друга в своем движении с поверхности колонии внутрь и обратно, меняя при этом облик жгутиконосца на форму амебы и форму амебы на облик жгутиконосца.

Таким образом, постоянная дифференциация членов колонии на два клеточных пласта позволила экономить время и жизненные ресурсы членов колонии, оказалась выгодной в эволюционном отношении и закрепилась генетически. Так возникло первое первичное многоклеточное животное (Prometazoa), получившее название ранняя фагоцителла, или фагоцителла-1.

Четвертая стадия – появление первого истинного многоклеточного животного Eumetazoa. Суть ее состояла в эпителизации кинобласта, повлекшей за собой серию важных эволюционных последствий. Сама же эпителизация была вызвана, в первую очередь, необходимостью повышения прочности межклеточных соединений достаточно крупного и активно плавающего существа. Таким образом, клетки кинобласта оказались надежно «сшиты» друг с другом и образовали самую первую ткань – эктодерму.

Это повлекло за собой следующие преобразования.

1. При эпителизации кинобласта часть клеток специализировалась на чувствительной функции и функции проведения раздражения. Так возникли первые чувствительно-нервные элементы, образующие в эктодерме первичный нервный плексус, или нервную систему диффузного типа. Чувствительные элементы сконцентрировались на аборальном полюсе, где образовали теменную пластинку. В конце концов, у фагоцителлы очень рано возник координационный центр, на основе которого развился первичный мозг (возможно, ассоциированный со статоцистом). Благодаря этому интегрированность фагоцителлы как целостного организма резко возросла.

2. Клетки фагоцитобласта больше уже не могли просовывать свои псевдоподии между жгутиковыми клетками, поэтому в эктодерме появилось отверстие – бластопор, или первичный рот, через которое клетки фагоцитобласта могли захватывать пищевые частицы. Ротовое отверстие возникло на функционально заднем полюсе, поскольку при плавании фагоцителлы, в силу гидродинамических причин, именно там концентрировались пищевые частицы. Последнее доказывается лабораторными опытами с личинками некоторых низших многоклеточных животных, рекапитулирующих позднюю фагоцителлу: при добавлении в воду частиц туши все они оказываются в области заднего полюса личинки, где и фагоцитируются клетками пищеварительной паренхимы.

3. С появлением ротового отверстия функционально задний полюс стал и морфологически задним, и получил название орального (или вегетативного). В соответствие с этим, противоположный полюс стал называться аборальным (или анимальным), а соединяющая их ось – первичной главной осью тела, очень важной координатой, с которой при морфоанатомическом анализе соотносится топографическое положение органов и частей всех многоклеточных животных. Таким образом, возникло существо, обладающее радиальной гетерополярной симметрией – первичной формой симметрии настоящих многоклеточных.

Это существо получило название поздней фагоцителлы, или фагоцителлы-2. Именно оно лежит в основе филогенетического древа всех истинных многоклеточных животных Eumetazoa.

1 Морула в переводе с латинского означает тутовая ягода.