Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Биохимия ответы / биохимия ответы.docx
Скачиваний:
163
Добавлен:
31.03.2015
Размер:
1.12 Mб
Скачать

Функция состоит в переносе аминокислот в рибосомы , к месту синтеза белка.

12. РИБОСОМНЫЕ РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ (рРНК), основные структурные и функцион. компоненты рибосом, в составе к-рых они участвуют в биосинтезе белка. Рибосо́мные рибонуклеи́новые кисло́ты (рРНК) — несколько молекул РНК, составляющих основу рибосомы. Основной функцией рРНК является осуществление процесса трансляции - считывания информации с мРНК при помощи адапторных молекул тРНК и катализ образования пептидных связей между присоединёнными к тРНКаминокислотами. На электронно-микроскопических изображениях интактных рибосом заметно, что они состоят из двух отличающихся размерами субчастиц. 

13. ИНФОРМАЦИОННАЯ РНК (иРНК), разновидность РНК (рибонуклеиновой кислоты), которая переносит ГЕНЕТИЧЕСКИЙ КОД при СИНТЕЗЕ БЕЛКА. Молекула иРНК переписывает код с молекулы ДНК и несет его к РИБОСОМАМ внутри клетки, где компонуются аминокислоты, в результате чего образуются полипептиды и белки.

Открыта в 1961 году Жакобом и Мано. Она составляет всего 2-3% от общего количества РНК клетки. Эта РНК не имеет жесткой специфической структуры и ее полинуклеотидная цепь образует изогнутые петли. В нерабочем состоянии м-РНК собрана в складки, свернута в клубок, связана с белком; а во время функционирования цепь расправляется. Матричные РНК синтезируются на ДНК в ядре. Процесс называется транскрипция (списывание).

Роль м-РНК – она несет информацию об аминокислотной последовательности (т.е. о первичной структуре) синтезируемого белка. Место каждой аминокислоты в молекуле белка закодировано определенной последовательностью нуклеотидов в цепи м-РНК, т.е. в м-РНК имеются «кодовые слова» для каждой аминокислоты – триплеты, или кодоны, или генетические коды.

14.

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.

Неорганические катализаторы ускоряют всевозможные химические реакции.

Общее между ферментами и неорганическими катализаторами:  1. Увеличивают скорость химических реакций, при этом сами не расходуются.  2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции.  3. Энергия химической системы остается постоянной.  4. В ходе катализа направление реакции не изменяется.  Различия между ферментами и неорганическими катализаторами:  1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.  2. Ферменты обладают высокой специфичностью к субстрату.  3. Ферменты по своей химической природе белки, катализаторы - неорганика.  4. Ферменты работают только в опрделенном диапазоне температур (обычно в районе 37 град. С плюс/минус 2-3 град. С). , а скорость неорганического катализа возрастает в 2-4 раза при повышении температуры на каждые 10 град. С по линейной зависимости (правило Вант-Гоффа) .  5. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов) , неорганические катализаторы работают нерегулируемо.  6. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.  7. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

15.

По строению ферменты делятся на простые (однокомпонентные) и сложные (двухкомпонентные). Простой фермент состоит только из белковой части; в состав сложного фермента входит белковая и небелковая составляющие. Иначе сложный фермент называютхолоферментом. Белковую часть в его составе называют апоферментом, а небелковую - коферментом. Химическая природа коферментов была выяснена в 30-е гг. Оказалось, что роль некоторых коферментов играют витамины или вещества, построенные с участием витаминов В1, В2, В5, В6, В12, Н, Q и др. Особенностью сложных ферментов является то, что отдельно апофермент и кофермент не обладают каталитической активностью.

В составе как простого, так и сложного фермента, выделяют субстратный, аллостерический и каталитический центры.

Каталитический центр простого фермента представляет собой уникальное сочетание нескольких аминокислотных остатков, расположенных на разных участках полипептидной цепи. Образование каталитического центра происходит одновременно с формированием третичной структуры белковой молекулы фермента. Чаще всего в состав каталитического центра простого фермента входят остатки серина, цистеина, тирозина, гистидина, аргинина, аспарагиновой и глутаминовой кислот.

Субстратный центр простого фермента - это участок белковой молекулы фермента, который отвечает за связывание субстрата. Субстратный центр образно называют "якорной площадкой", где субстрат прикрепляется к ферменту за счет различных взаимодействий между определенными боковыми радикалами аминокислотных остатков и соответствующими группами молекулы субстрата. Субстрат с ферментом связывается посредством ионных взаимодействий, водородных связей; иногда субстрат и фермент связываются ковалентно. Гидрофобные взаимодействия также играют определенную роль при связывании субстрата с ферментом. В простых ферментах субстратный центр может совпадать с каталитическим; тогда говорят об активном центре фермента. Так, активный центр амилазы - фермента, гидролизующего α-1,4-гликозидные связи в молекуле крахмала - представлен остатками гистидина, аспарагиновой кислоты и тирозина; ацетилхолинэстеразы, гидролизующей сложноэфирные связи в молекуле ацетилхолина, остатками гистидина, серина, тирозина и глутаминовой кислоты. В активном центре карбоксипептидазы А, гидролизующей определенные пептидные связи в молекуле белка, локализованы остатки аргинина, тирозина и глутаминовой кислоты.

Аллостерический центр представляет собой участок молекулы фермента, в результате присоединения к которому какого-то низкомолекулярного вещества изменяется третичная структура белковой молекулы фермента, что влечет за собой изменение его активности. Аллостерический центр является регуляторным центром фермента.

В сложных ферментах роль каталитического центра выполняет кофермент, который связывается с апоферментом в определенном участке - кофермент связывающем домене. Понятия субстратного и аллостерического центров для сложного фермента и для простого аналогичны.

16.

Изоферменты, или изоэнзимы — это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях илиорганах.

Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.

Примером фермента, имеющего изоферменты, является гексокиназа, имеющая четыре изотипа, обозначаемых римскими цифрами от I до IV. При этом один из изотипов гексокиназы, а именно гексокиназа IV, экспрессируется почти исключительно в печени и обладает особыми физиологическими свойствами, в частности её активность не угнетается продуктом её реакции глюкозо-6-фосфатом.

Ещё одним примером фермента, имеющего изоферменты, является амилаза — панкреатическая амилаза отличается по аминокислотной последовательности и свойствам от амилазы слюнных желёз, кишечника и других органов. Это послужило основой для разработки и применения более надёжного метода диагностики острого панкреатита путём определения не общей амилазы плазмы крови, а именно панкреатической изоамилазы.

Третьим примером фермента, имеющего изоферменты, является креатинфосфокиназа — изотип этого фермента, экспрессируемый в сердце, отличается по аминокислотной последовательности от креатинфосфокиназы скелетных мышц. Это позволяет дифференцировать повреждения миокарда (например, при инфаркте миокарда) от других причин повышения активности КФК, определяя миокардиальный изотип КФК в крови.

17.

Важнейшим свойством ферментов является преимущественное одной из нескольких теоретически возможных реакций. В зависимости от условий ферменты способны катализировать как прямую так и обратную реакцию. Это свойство ферментов имеет большое практическое значение. 

Другое важнейшее свойство ферментов - термолабильность, т. е. высокая чувствительность к изменениям температуры. Так как ферменты являются белками, то для большинства из них температура свыше 70 C приводит к денатурации и потере активности. При увеличении температуры до 10 С реакция ускоряется в 2-3 раза, а при температурах близких к 0 С скорость ферментативных реакций замедляется до минимума.

Следующим важным свойством является то, что ферменты находятся в тканях и клетках в неактивной форме (проферменте). Классическими его примерами являются неактивные формы пепсина и трипсина. Существование неактивных форм ферментов имеет большое биологическое значение. Если бы пепсин вырабатывался сразу в активной форме, то пепсин "переваривал" стенку желудка, т. е. желудок "переваривал" сам себя.

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

 

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

 

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.

 

Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой  зависит конформация активного центра, взаимодействующего с компонентами реакции.

 

Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S).

 

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2)  Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

 

Активность зависит в первую очередь от температуры. Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

 

 

 

 

 

 

Активность ферментов  зависит также от рН среды. Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продукта  замедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

18.

Рис.3. Схема механизма действия фермента.

На первом этапе (I) происходит активация фермента путем связывания с аллостерическим центром регуляторных веществ (например, гормонов), что приводит к изменению конформации активного центра фермента и увеличению его способности связывать молекулу субстрата.

На втором этапе (II)происходит 'узнавание' ферментом своего субстрата (см. Специфичность действия фермента).

На третьем этапе (III) происходит формирование неактивного фермент-субстратного комплекса за счет образования гидрофобных и водородных связей между радикалами аминокислотных остатков субстратного центра (контактные площадки) и соответствующими группировками в молекуле субстрата. Молекула субстрата удерживается вблизи активного центра, но химическим преобразованиям еще не подвергается.

На четвертом этапе (IV) образуется активный фермент-субстратный комплекс. При этом происходит химическое преобразование субстрата с участием каталитического центра и кофермента (если речь идет о сложном ферменте). В результате этого молекула субстрата меняет сою пространственную конфигурацию, в ней происходит перераспределение энергии и уменьшается прочность связей.

На пятом этапе (V) фермент-субстратный комплекс становиться нестабильным и затем преобразуется в комплекс фермент-продукт, который распадается на продукты реакции и фермент. Фермент из реакции выходит в неизменном виде.

19.

Классификация ферментов  По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC — Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название EС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:  • EC 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа  • EC 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.  • EC 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза  • EC 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.  • EC 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.  • EC 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза  Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям. 

Каждый класс ферментов подразделяется на подклассы, которые в свою очередь в зависимости от природы ферментативной реакции делятся еще на подподклассы, в пределах которых нумеруются.

 Ранее многие ферменты, осуществляющие процессы глубокого расщепления органических соединений (десмолаза), объединялись под общим названием десмолаз (например, комплекс ферментов брожения, каталаза, карбоангидраза и др.). Наряду с единой номенклатурой существуют стандартные единицы выражения активности ферментов: одна единица (Е) любого фермента — это количество фермента, которое при заданных условиях катализирует превращение 1 мкмоля субстрата в 1 мин.; концентрации раствора ферментов приводятся в единицах активности на 1 мл раствора; молекулярную активность фермента — выражает число молекул субстрата (или эквивалентов затронутой группы), превращаемых за 1 минуту одной молекулой фермента. Ферментативные реакции, как и обычные химические реакции, ускоряются при повышении температуры. Температурный оптимум действия ферментов лежит в пределах 40—60°. При более высокой температуре, как правило, происходит инактивация ферментов. Некоторые ферменты довольно устойчивы к высоким температурам, например рибонуклеаза выдерживает нагревание до 100°. Ферментыпроявляют максимальную активность только при определенном значении рН среды. Активность ферментов подавляется веществами, называемыми ингибиторами (см.). Действие ингибиторов может быть обратимым, когда активность ферментов восстанавливается при удалении ингибитора, и необратимым, когда при удалении ингибитора активность ферментов практически не восстанавливается. Ферменты локализованы в определенных клеточных структурах. Структурная организация ферментных систем обеспечивает определенную последовательность ферментативных реакций и определенную скорость протекания процесса в целом. Для нормального функционирования ферментной системы необходимо, чтобы активность всех входящих в нее ферментов была оптимальной. Если один из ферментов по той или иной причине снизит свою активность или выпадет из системы, то нарушается деятельность всей ферментной системы в целом, что может вызвать заболевание всего организма. Отсюда следует важность для диагностики заболевания определения активности и количества ферментов. В клинической практике изучению ферментов придается большое значение. Наиболее широкому изучению подвергаются ферменты сыворотки (плазмы) и цельной крови. Изменение «ферментного спектра» крови бывает вследствие увеличения (гиперферментемия), уменьшения (гипоферментемия) или появления в крови ферментов, отсутствующих в крови здорового человека (дисферментемия). Появление в крови неспецифических ферментов может быть следствием нарушенияпроницаемости биологических мембран, разрушения клеток или результатом защитной реакции организма.

20.

Соседние файлы в папке Биохимия ответы