Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen.doc
Скачиваний:
412
Добавлен:
31.03.2015
Размер:
1.15 Mб
Скачать
  1. Синтез вторичных метаболитов с использованием культуры клеток и тканей растений.

Исходные клеточные суспензии обычно получают из рыхлых, оводненных каллусных тканей (2—3 г на 60—100 мл питательной среды), подвергнутых обработке пектиназой и полигалактурона-зой, и помещаемых в жидкую питательную среду, лишенную ионов кальция, но содержащую ауксин — 2,4-дихлорфеноксиуксусную кислоту. Условия выращивания поддерживают либо в периодическом, либо в непрерывном режиме, специально подобранном для конкретного биообъекта. В других случаях источниками суспензионных культур могут быть протопласты с реконструированными клеточными стенками. Стимулировать деления отдельных клеток изолированных протопластов можно с помощью обогащенных питательных сред или использованием гомологичной ткани — "няньки" ("кормящий слой"), находящейся в состоянии активного роста (рис. 143). Колонии из отдельных клеток (клоны) могут быть субкультивированы один или более раз (при необходимости), а затем переведены в суспензионные культуры.

Важно также сохранить присущие клеткам метаболические пути при их выращивании в суспензионных культурах. Более того, регулируя обмен, можно добиваться заметного повышения выхода целевых продуктов. При этом всегда необходимо учитывать тип дифференцировки, или состояния специализации исходных клеток, так как от него зависит видоспецифичность первичного и вторичного метаболизма.

Суспензионные культуры обычно выращивают в подходящих емкостях роллерного типа после фильтрации первичной суспензии через стерильные металлические, нейлоновые илитяарлевые сита для освобождения от крупных аггломератов клеток.

К сожалению, выращивание растительных клеток в "погруженных" условиях пока удается в редких случаях, что обусловлено недостаточной глубиной познания всех особенностей обмена веществ у различных видов и их клеточных культур; определенные помехи здесь связаны и с медленным ростом клеток в строго асептических условиях, их чувствительностью к механическим повреждениям и другими причинами.

В начале 80-х годов в компании Mitsui-Petrocheniical Industries осуществлен первый крупномасштабный процесс по выращиванию воробейника (Lithospermum erythrorbizon) в погруженных условиях в целях получения вторичного метаболита — шиконина, являющегося ценным фармацевтическим препаратом и красителем. За один периодический процесс удается получать порядка 5 кг конечного продукта, накапливающегося в клетках. На первой стадии клетки воробейника выращивают на среде (с подачей стерильного воздуха) в 200-литровом биореакторе в течение 9 суток; затем культуру переносят в биореактор меньшего размера со средой (М-9), стимулирующей продукцию шиконина, и, наконец, в третьем реакторе на 750 л ферментацию ведут в течение 2 недель. Клетки на первой стадии белые, на последней — красные (накоплен шиконин). Стоимость красителя в 1983 г. составляла 4000 долларов за килограмм.

  1. Иммунобиотехнология. Диагностикумы, аллергены, бактериофаги, токсины и анотоксины. Характеристика и способы получения.

Иммунобиотехнология — это раздел современной биотехнологии, представленной как научными достижениями, так и динамично развивающимся технологическим производством диагностических, профилактических и лекарственных средств с применением в качестве действующего начала разных агентов и процессов иммунной системы. Известно, что человек обладает иммунной системой для защиты от воздействия внешних неблагоприятных факторов, биологически активных агентов. В качестве таких агентов выступают клетки микроорганизмов, вирусы, белки, нуклеиновые кислоты, антибиотики, пестициды, объединенные под общим названием антигенов. Понятие «антиген» является общим, так как обозначает определенную химическую структуру, против которой могут быть получены антитела.

В современной фармацевтической биотехнологии кроме иммуномодуляторов и иммуносупрессоров значительное место отводится лекарственным и диагностическим препаратам, получаемым на основе медиаторов иммунной системы.

Для организации масштабного производства моноклональных антител ключевую роль сыграл метод гибридомной технологии. Хорошо известно, что в результате иммунного ответа на какойлибо антиген образуется высокогетерогенный продукт — антисыворотка со смесью антител, продуцируемых разными линиями Влимфоцитов и направленных к разным антигенным детерминантам антигена. Проблема получения определенной линии лимфоцитов, которые не растут на искусственной среде in vitro в культуре, была решена, как только стало возможным получение соматических гибридов. Известно, что миеломы (злокачественные опухоли костного мозга, клетки которых обладают способностью к неограниченному росту) продуцируют большое количество аномальных иммуноглобулинов.

В 1975 г. Г. Келер и К. Мильштейн сумели впервые выделить клоны клеток, способные секретировать только один тип молекул антител и в то же время расти в культуре. Эти клоны клеток были получены слиянием антителообразующих и опухолевых клеток — клетокхимер, названных гибридомами, так как, с одной стороны, они наследовали способность к практически неограниченному росту в культуре, а с другой стороны, способность к продукции антител определенной специфичности (моноклональных антител).

Весьма существенно для биотехнолога то, что отобранные клоны могут длительно храниться в замороженном состоянии, поэтому в случае необходимости можно взять определенную дозу такого клона и ввести животному, у которого будет развиваться опухоль, продуцирующая моноклональные антитела заданной специфичности. Вскоре в сыворотке животного будут обнаружены антитела в очень высокой концентрации от 10 до 30 мг/мл. Клетки такого клона можно также выращивать in vitro, а секретируемые ими антитела получатъ из культуральной жидкости.

В Настоящее время гибридомная технология получила широкое применение. Создание гибридом, которые можно хранить в замороженном состоянии (криоконсервирование), позволило организовать целые гибридомные банки, что в свою очередь открыло большие перспективы по применению моноклональных антител. Сфера их применения помимо количественного определения разных веществ включает самую разнообразную диагностику, например идентификацию определенного гормона, вирусных или бактериальных антигенов, антигенов группы крови и тканевых антигенов.

Только благодаря использованию моноклональных антител, полученных в результате иммунизации животных лекарствами, стало возможно определение дозы этих лекарств. Такая «иммунодозировка» надежна и экономична. В 1990х гг. в США «Управление по контролю за качеством пишевых продуктов, медикаментов и косметических средств» (РБА) впервые утвердило к продаже коммерческий набор для диагностического скрининга на основе гибридом, предназначенный для установления аллергена.

С помощью моноклональных антител возможно выделение биологически активных веществ (белков, гормонов, токсинов) из сложных смесей. Например, при использовании иммуноадсорбции для очистки интерферона был получен препарат высочайшей степени очистки (до 99 %). Только после одного пассажа через колонку с иммобилизованными моноклональными антителами препарат очищался в 5 000 раз!

Можно использовать моноклональные антитела и в качестве меток для точной идентификации специализированных клеток, например нейронов. Существует также технология использования моноклональных антител для изучения клеточных мембран, позволяющая выделять мембранные белки в чистом виде и измерять их биологическую активность.

Кроме того, можно создавать высокоспецифичные вакцины, особенно против определенных вирусных штаммов и паразитов. Моноклональные антитела способны также к нейтрализации лимфоцитов, ответственных за отторжение трансплантата и аутоантител, образующихся при аутоиммунных заболеваниях (некоторые формы диабета, рассеянный склероз, ревматические болезни). В сочетании с лекарственными средствами они могут значительно усиливать эффективность действия последних на клеткимишени, позволяя избегать серьезных побочных явлений, весьма обычных, например при химиотерапии рака.

Самыми важными областями использования иммунохимического анализа являются:

  • контроль банков крови и продуктов из донорской крови;

  • обнаружение возбудителей в объектах внешней среды;

  • диагностика инфекционных заболеваний;

  • диагностика диабета.

Сегодня количество проводимых иммунохимических анализов в мире растет настолько стремительно, что производство иммунодиагностикумов совместно с приборами и вспомогательными материалами можно рассматривать уже как отдельную, самостоятельную область биотехнологической промышленности.

Лекарственный мониторинг также осуществляется посредством использования методов иммунохимичсского анализа. Необходимость контроля за концентрацией лекарственного препарата в процессе терапии у больного возникает при следующих ситуациях:

• длительных курсовых приемах лекарственных средств;

  • низком терапевтическом эффекте или полном его отсутствии;

  • возникновении побочных явлений в случае превышения терапевтической дозы препарата;

  • трудно определяемом фармакологическом эффекте;

  • особых обстоятельствах (например, при лечении новорожденных).

Лекарственный мониторинг может применяться, например, при терапии такими препаратами, как бронхолитик теофиллин, сердечный гликозид дигоксин и т.д. Известно, что успешный клинический результат зависит не от дозы препарата, а от его концентрации в плазме крови. Поэтому при достижении одного и того же лечебного эффекта у разных больных лекарственная дозировка препарата может разниться в десятки раз. Совершенно очевидно, что в этих случаях необходим индивидуальный подбор доз для каждого пациента. Кроме того, мониторинг лекарственных средств исключает передозировку лекарственного препарата и, соответственно, проявления токсических эффектов.

Рентабельными, экспрессными методами определения низкомолекулярных соединений в плазме крови являются иммуноаналитические методы, которые отличаются универсальностью (применимы к любому веществу, способному к индукции антител), высокой селективностью и чувствительностью; не требуют предварительной обработки образцов и имеют сравнительно низкую стоимость.

В настоящее время иммунодиагностические тестсистемы с использованием поликлональных антител созданы практически для всех лекарственных препаратов. При проведении лекарственного мониторинга с использованием методов иммунохимического анализа в качестве «маркеров» применяются:

• радиоактивные метки (радиоиммунный анализ с использованием радиоактивных атомов — трития, радиоактивного йода и др.);

• ферментные метки (если ферменты стабильны, активны и действуют в минимальных концентрациях);

• субстратные метки (АТФ и НАД), которые «пришиваются» к молекуле антигена через (адениновый остаток и сохраняют способность взаимодействия с ферментом.

В качестве примера можно привести радиоиммунный метод количественного определения инсулина, основные принципы которого рассмотрим более подробно.

Общеизвестно, что инсулин влияет на концентрацию глюкозы в крови. В лабораторных условиях при наличии животных можно по снижению уровня глюкозы в крови сравнивать отдельные препараты инсулина. Но этот путь совершенно неприемлем для определения инсулина в крови больных, учитывая, что в контроле фактически нуждается если не миллионный, то многотысячный контингент больных. Клиническая лаборатория обязана определять количество эндогенного инсулина в крови больных, которым предписано введение инсулина извне. В противном случае возможны передозировки инсулина. Метод отличается высокой избирательностью (на результаты не влияют любые белки крови) и высокой точностью. В качестве лабораторного оборудования необходимы стандартный гаммасчетчик (например ГСБ1) и коммерческий набор реагентов (в него входят меченый (по йоду) инсулин, у которого кодированы остатки тирозина и гистидина; антисыворотка к инсулину (антитела к инсулину), получаемая из крови кроликов, которым вводили инсулин).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]