Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекция 1

.doc
Скачиваний:
26
Добавлен:
09.04.2015
Размер:
97.79 Кб
Скачать

ЛЕКЦИЯ 1. Введение. Основные понятия, гипотезы и принципы. Расчётная схема сооружения. Виды нагрузок.

Введение. Курс «Сопротивление материалов» является одним из разделов науки, которая носит название «Механика деформируемого твёрдого тела». В теоретической механике рассматривается равновесие и движение абсолютно твёрдого тела. Механика деформируемого твёрдого тела – наука, в которой изучаются законы движения и равновесия твёрдых тел в условиях их деформирования под действием различных нагрузок. Деформация твёрдого тела заключается в изменении его размеров и формы.

Например, стержень под действием растягивающих сил удлиняется, балка, нагруженная поперечной силой, изгибается, вал под действием скручивающих нагрузок претерпевает кручение. Эти примеры проиллюстрированы на рис. 1.1.

а) б) в)

Рис. 1.1. Различные виды сопротивления стержня: а) растяжение; б) изгиб; в) кручение

При действии нагрузок в твёрдых телах возникают внутренние силы, которые характеризуют сопротивление тела деформации. Внутренние силы, отнесённые к единице площади, называются напряжениями.

Сопротивление материалов – наука о методах расчёта инженерных конструкций и их элементов на прочность, жёсткость и устойчивость. Правильное решение этих задач является основой при расчёте и проектировании конструкций, поскольку оно обеспечивает их надёжность в течение всего периода эксплуатации.

Прочность – способность конструкции и её элементов не разрушаясь нести приложенные к ним нагрузки в течение всего времени эксплуатации. Потеря прочности балки под действием силы показана на рис. 1.2.а на примере разрушения балки.

Жёсткость - способность конструкции и её элементов деформироваться в заданных пределах. Обычно жёсткость конструкций регламентируется нормами проектирования. Например, максимальные прогибы балок (рис. 1.2.б), применяемых в строительстве находятся в пределах v = (1/200÷1/1000), углы закручивания валов обычно не должны превышать 20 на 1 метр длины вала и т.д.

Устойчивость - способность конструкции и её элементов сохранять первоначальную форму равновесия. Например, для стержня на рис. 1.2.в при F < Fcr будет устойчивой первоначальная прямолинейная форма равновесия, а при F > Fcr устойчивым будет изогнутое состояние стержня. При этом стержень будет работать не только на сжатие, но и на изгиб, что приведёт его к быстрому разрушению из-за потери устойчивости.

а) б) в)

Рис. 1.2. Иллюстрации потери стержнем: а) прочности; б) жесткости;

в) устойчивости

Кроме того, что сооружение должно быть прочным, жёстким и устойчивым, оно должно быть ещё и экономичным.

Некоторые сведения из истории науки о сопротивлении материалов. Начало этой науки относят к 1638 году, когда Галилео Галилей опубликовал свой труд «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению».

В дальнейшем проблемами поведения конструкций под нагрузкой занимались Кулон, братья Бернулли, Эйлер, Лагранж, Гук. Их работы, в основном, относились к математической стороне задачи и не получили в то время практического применения.

В начале XIX века сопротивление материалов становится основой для расчётов сооружений и машин. Инженер и математик Навье в 1826 году во Франции издал первый курс сопротивления материалов, в котором суммировался весь накопленный в то время объём знаний по этой науке. В это время в России и за рубежом появляются механические лаборатории для испытания материалов с целью определения их механических свойств и проверки теоретических выводов.

В последнее время методы механики деформируемого твёрдого тела усиленно развиваются на базе использования ЭВМ и достижений в физике твёрдого тела.

Основные понятия, гипотезы и принципы. Одним из основных понятий механики деформируемого твёрдого тела является понятие о деформации тела при различных воздействиях. В процессе деформирования изменяется взаимное расположение частиц тела, которые получают перемещения.

Как правило, эти перемещения считаются малыми по сравнению с размерами тела.

Вводится ряд гипотез и допущений, касающихся характера процесса деформирования тела и свойств его материала.

Деформирование называют абсолютно упругим (гипотеза идеальной упругости тела), если после снятия нагрузки деформации полностью исчезают и восстанавливаются первоначальные размеры и форма тел.

Наличие остаточных деформаций характеризует пластические свойства материала. Процесс деформирования тела с учётом пластических деформаций изучается в курсе теории пластичности.

При нагружении тела с фиксацией нагрузки на определённом уровне с течением времени деформации могут увеличиться, такое явление называют ползучестью. С другой стороны, если деформации тела в течение определённого периода времени остаются неизменными, то внутренние силы и напряжения в теле могут уменьшиться. Такое явление называется релаксацией напряжений.

На основе гипотезы о сплошности тела материал считается сплошным и полностью заполняющим объём, ограниченный поверхностью тела. При этом не учитывается молекулярное состояние вещества.

Строение и состав материала могут быть неодинаковыми в различных точках. В природе все тела более или менее неоднородны. Для многих строительных конструкционных материалов вводится гипотеза об однородности тела, что соответствует осреднению свойств материала по всему объёму.

Материал тела имеет определённые физико-механические характеристики. Если эти характеристики одинаковы по всем направлениям, то материал называется изотропным, а при их различии – анизотропным. Свойством анизотропии в той или иной степени обладают все материалы, но если она незначительна, то её можно пренебречь и считать материал изотропным.

Большое значение в механике деформируемого твёрдого тела имеет принцип суперпозиции или принцип независимости действия сил. Он справедлив при выполнении закона Гука. Согласно этому принципу какой-либо результат действия нагрузки (деформации, опорные реакции) можно представить в виде суммы аналогичных результатов действия по отдельности всех составляющих нагрузки. Например, удлинение стержня на рис.1.3.а от сил F1 и F2 равно сумме его удлинений от раздельного действия этих сил (рис. 1.3.б и 1.3.в)

а) б) в)

Рис. 1.3. Иллюстрация принципа независимости действия сил

Использование принципа Сен-Венана позволяет вносить упрощения в расчётные схемы. Этот принцип в середине XIX века сформулировал французский математик и механик. Согласно принципу Сен-Венана напряжённое состояние тела на достаточном удалении от области действия локальных нагрузок мало зависит от детального способа приложения этих нагрузок (рис. 1.4).

а) б) в)

Рис. 1.4. Иллюстрация принципа Сен-Венана

Расчётная схема сооружения. Расчёт любой конструкции начинается с построения её расчётной схемы. При этом вводятся схематизации и упрощения, касающиеся характера действия нагрузок, условий опирания, типов конструктивных элементов и т.п. Расчётная схема отображает всё существенное для работы данной конструкции и не содержит второстепенных факторов, мало влияющих на результаты её расчёта.

По геометрическим признакам выделяют три типа расчётных схем.

1. Стержни или брусья (рис. 1.5.а), у которых длина значительно больше размеров поперечного сечения (стойка, вал, балка). Они могут иметь различную форму поперечного сечения (круг, прямоугольник, двутавр, и т.п.), они бывают сплошными и полыми (например, труба), криволинейными и прямолинейными, с постоянными или переменными по длине размерами сечения.

а) б) в)

Рис. 1.5. Схемы расчётных элементов: а) стержень; б) пластина;

в) массивное тело

2. Пластины и оболочки (рис 1.5.б) имеют один размер – толщину - намного меньше двух других размеров (плиты перекрытий, панели зданий, ).

3. Массивное тело (рис 1.5.в) имеет размер во всех трёх направлениях одного порядка (блоки фундаментов, гидротехнических сооружений).

В инженерных конструкциях широко применяются стержневые системы (рис. 1.6), состоящие из стержней, например рамы и фермы.

а) б)

Рис. 1.6. Стержневые системы: а) рамы; б) фермы

Виды нагрузок. Нагрузки, действующие на конструкции, классифицируют по ряду признаков.

  1. Поверхностные и объёмные нагрузки. Поверхностные нагрузки можно рассматривать как результат взаимодействия различных конструктивных элементов друг с другом или с различными физическими объектами (грунт, вода, снег). Объёмные нагрузки действуют на каждую частицу внутри тела (собственный вес конструкции, силы инерции).

  2. Активные и реактивные нагрузки. Активные нагрузки, как правило, известны. Реактивные нагрузки – реакции связей, возникают в местах закрепления конструктивного элемента и подлежат определению.

  3. Распределённые и сосредоточенные нагрузки. Все поверхностные нагрузки являются распределёнными по некоторой поверхности конструкции (снег, ветер). Эти нагрузки характеризуются интенсивностью q, которая может быть переменной или постоянной. В последнем случае нагрузка называется равномерно распределённой. При расчёте стержней распределённая по площади нагрузка приводится к линейной, распределённой по длине стержня. При малой площади распределения нагрузку можно считать сосредоточенной.

  4. Статические и динамические нагрузки. При статическом нагружении пренебрегают силами инерции, такое нагружение характеризуется постепенным нарастанием нагрузки до её конечного значения. При динамическом нагружении нагрузки прикладываются внезапно или ударно. В этом случае учёт сил инерции и частоты колебаний является обязательным.

  5. Постоянные и временные нагрузки. К постоянным нагрузкам относят те, которые должны действовать в течение всего периода эксплуатации конструкции (собственный вес). Временные носят периодический характер (давление людей и оборудования на перекрытия здания).

5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]