Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Опишите закон Фарадея.docx
Скачиваний:
63
Добавлен:
18.04.2015
Размер:
920.12 Кб
Скачать

Опишите закон Фарадея-Ленца

  • Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

фундаментальные ур-ния классич. макроскопич. электродинамики, описывающие эл.-магн. явления в любой среде (и в вакууме). Сформулированы в 60-х гг. 19 в. Дж. Максвеллом на основе обобщения эмпирич. законов электрич. и магн. явлений и развития идеи англ. учёного М. Фарадея о том, что вз-ствия между электрически заряж. телами осуществляются посредством эл.-магн. поля. Совр. форма М. у. дана нем. физиком Г. Герцем и англ. физиком О. Хевисайдом.

М. у. связывают величины, характеризующие эл.-магн. поле, с его источниками, т. е. с распределением в пр-ве электрич. зарядов и токов. В вакууме эл.-магн. поле характеризуется напряжённостью электрич. поля Е и магн. индукцией В — векторными величинами, зависящими от пространств. координат и времени. Эти величины определяют силы, действующие со стороны поля на заряды и токи, распределение к-рых в пр-ве задаётся плотностью заряда r (величиной заряда в ед. объёма) и плотностью электрического тока j. Для описания эл.-магн. процессов в матер. среде, кроме Е и В, вводятся вспомогат. векторные величины, зависящие от состояния и св-в среды: электрич. индукция D и напряжённость магн. поля Н.

М. у. позволяют определить осн. хар-ки поля (E, В, D и Н) в каждой точке пр-ва в любой момент времени, если известны источники поля j и r как ф-ции координат и времени. М. у. могут быть записаны в интегр. или дифф. форме (ниже они приводятся в Гаусса системе единиц).

М. у. в и н т е г р а л ь н о й ф о р м е определяют не векторы E, В, D и Н в отд. точках пр-ва, а нек-рые интегр. величины, зависящие от распределения этих хар-к поля: циркуляцию векторов Е и Н вдоль произвольных замкнутых контуров и потоки векторов D и B через произвольные замкнутые поверхности.

Первое М. у. явл. обобщением на перем. поля эмпирического Био — Савара закона о возбуждении магн. поля электрич. токами. Максвелл высказал гипотезу, что магн. поле порождается не только токами, текущими в проводнике, но и перем. электрич. полями в диэлектриках или вакууме. Величина, пропорц. скорости изменения электрич. поля во времени, была названа Максвеллом током смещения, он возбуждает магн. поле по тому же закону, что и ток проводимости. Полный ток, равный сумме тока смещения и тока проводимости, всегда явл. замкнутым. Первое М. у. имеет вид:

т. е. циркуляция вектора магн. напряжённости вдоль замкнутого контура L (сумма скалярных произведений вектора Н в данной точке контура на бесконечно малый отрезок dl контура) определяется полным током через произвольнуюповерхность S, ограниченную данным контуром. Здесь jn — проекции плотности тока проводимости j на нормаль к бесконечно малой площадке ds, являющейся частью поверхности S; (1/4p)(дDn/дt) — проекция плотности тока смещения на ту же нормаль; с—3•1010см/с — постоянная, равная скорости распространения эл.-магн. вз-ствий (скорость света) в вакууме.

Второе М. у. является матем. формулировкой закона электромагнитной индукции Фарадея и записывается в виде:

т. е. циркуляция вектора напряженности электрич. поля вдоль замкнутого контура L (эдс индукции) определяется скоростью изменения потока вектора магн. индукции через поверхность S, ограниченную данным контуром. Здесь Bn — проекция на нормаль к площадке ds вектора магн. индукции В; знак «-» соответствует Ленца правилу для направления индукц. тока.

Третье М. у. выражает опытные данные об отсутствии магн. зарядов, аналогичных электрическим (магн. поле порождается только электрич. токами):

т. е. поток вектора магн. индукции через произвольную замкнутую поверхность S равен нулю.

Четвёртое М. у. (обычно наз. Гаусса теоремой) представляет собой обобщение закона вз-ствия неподвижных электрич. зарядов — Кулона закона:

т. е. поток вектора электрич. индукции через произвольную замкнутую поверхность S определяется электрич. зарядом, находящимся внутри этой поверхности (в объёме V, ограниченном поверхностью S).

Если считать, что векторы эл.-магн. поля (Е, В, D и Н) явл. непрерывными ф-циями координат, то, рассматривая циркуляцию Н и Е по бесконечно малым контурам и потоки векторов В и D через поверхности, ограничивающие бесконечно малые объёмы, можно от интегральных М. у- (1, а—г) перейти к системе дифференциальных М. у., характеризующих поле в каждой точке пр-ва:

Физ. смысл ур-ний (2) тот же, что ур-ний (1).

М. у. в форме (1) или (2) не образуют полной замкнутой системы, позволяющей рассчитывать эл.-магн. процессы при наличии матер. среды. Их необходимо дополнить соотношениями, связывающими векторы Е, Н, D, В и j, к-рые не являются независимыми. Связь между ними определяется св-вами среды и её состоянием, причём D и 3 выражаются через Е, а В — через Н:

D=D(E), B=B(H),j=j(E). (3)

Эти ур-ния наз. ур-ниями состояния или материальными ур-ниями; они описывают эл.-магн. св-ва среды и для каждой конкретной среды имеют определ. форму. В вакууме D?Е и В?Н.

Совокупность ур-ний поля (2) и ур-ний состояния (3) образуют полную систему ур-ний.

Макроскопич. М. у. описывают среду феноменологически, не рассматривая сложного механизма вз-ствия эл.-магн. поля с заряж. ч-цами среды. М. у. могут быть получены из Лоренца — Максвелла уравнений для микроскопич. полей и определ. представлений о строении в-ва путём усреднения микрополей по малым пространственно-временным интервалам. Таким способом получаются как осн. ур-ния поля (2), так и конкретная форма ур-ний состояния (3), причём вид ур-ний поля не зависит от св-в среды.

Ур-ния состояния в общем случае очень сложны, т. к. векторы D, В и j в данной точке пр-ва в данный момент времени могут зависеть от полей E и H и If во всех точках среды во все предшествующие моменты времени. В нек-рых средах векторы D и В могут быть отличными от нуля при Е и Н равных нулю (сегнетоэлектрики и ферромагнетики). Однако для большинства изотропных сред, вплоть до весьма значит. полей, ур-ния состояния имеют простую линейную форму:

D=eE, B=mH, j=sE+jстр. (4)

Здесь e(х, у, z) — диэлектрическая проницаемость, a m(х, у, z) — магнитная проницаемость среды (для вакуума в системе СГС e=m=1), величина s(х, у, z) наз. удельной электропроводностью, j'стр — плотность т. н. сторонних токов, т. е. токов, поддерживаемых любыми силами, кроме см электрич. поля (напр., маги. полем, диффузией). В феноменологич. теории Максвелла макроскопич. характеристики эл.-магн. св-в среды e, m и s должны быть найдены экспериментально. В микроскопич. теории Лоренца — Максвелла они могут быть рассчитаны.

Проницаемости e и m фактически определяют тот вклад в эл.-магн. поле, к-рый вносят т. н. связанные заряды, входящие в состав электрически нейтр. атомов и молекул в-ва. При известных из опыта e, m и s можно рассчитать эл.-магн. поле в среде, не решая трудную вспомогат. задачу о распределении связанных зарядов и соответствующих им токов в в-ве. Плотность заряда r и плотность тока j в М. у.— это плотности свободных зарядов и токов, причём вспомогат. векторы Н и D вводятся так, чтобы циркуляция вектора Н определялась только движением свободных зарядов, а поток вектора D — плотностью распределения этих зарядов в пр-ве.

Если эл.-магн. поле рассматривается в двух граничащих средах, то на поверхности раздела векторы поля могут претерпевать разрывы (скачки); в этом случае ур-ния (2) должны быть дополнены граничными условиями:

Здесь jпов и rпов — плотности поверхностных тока и заряда, квадратные и круглые скобки — соотв. векторные и скалярные произведения векторов, n — единичный вектор нормали к поверхности раздела и направления от первой среды ко второй (1®2), а индексы относятся к разным сторонам границы раздела.

Осн. ур-ния для поля (2) линейны, ур-ния же состояния (3) в общем случае нелинейны. Обычно нелинейные эффекты обнаруживаются в достаточно сильных полях. В линейных средах (удовлетворяющих соотношениям (4)), и в частности в вакууме, М. у. линейны, так что для них справедлив суперпозиции принцип: при наложении полей они не оказывают влияния друг на друга.

Из М. у. вытекает ряд законов сохранения. В частности, из ур-ний (1, а) и (1, г) можно получить т. н. ур-ние непрерывности:

представляющее собой закон сохранения электрич. заряда: полный ток, протекающий за ед. времени через любую замкнутую поверхность S, равен изменению заряда внутри объёма V, ограниченного поверхностью S. Если ток через поверхность отсутствует, то заряд в объёме V остаётся неизменным.

Из М. у. следует, что эл.-магн. поле обладает энергией и импульсом. Плотность энергии W (энергия поля в ед. объёма) равна:

Эл.-магн. энергия может перемещаться в пр-ве. Плотность потока энергии определяется т. н. вектором Пойнтинга

Направление вектора Пойнтинга перпендикулярно и E и H и совпадает с направлением распространения эл.-магн. энергии, а его величина равна энергии, переносимой в ед. времени через единичную поверхность, перпендикулярную П. Если эл.-магн. энергия не переходит в др. формы энергии, то, согласно М. у., изменение энергии в нек-ром объёме за ед. времени равно потоку эл.-магн. энергии через поверхность, ограничивающую этот объём. Если внутри объёма за счёт эл.-магн. энергии выделяется теплота, то закон сохранения энергии записывается в виде:

где Q — кол-во теплоты, выделяемой в ед. времени, Пn — проекция П на нормаль к бесконечно малой площадке ds.

Плотность импульса эл.-магн. поля g (импульс ед. объёма поля) связана с плотностью потока энергии соотношением:

Существование импульса эл.-магн. поля впервые было экспериментально обнаружено в опытах П. Н. Лебедева по измерению давления света (1899—1901).

Как видно из (7), (8) и (10), эл.-магн. поле всегда обладает энергией, а поток энергии и эл.-магн. импульс отличны от нуля лишь в случае, когда одновременно существуют и электрич. и магн. поля, причём Е и Н не параллельны друг другу.

М. у. приводят к фундам. выводу о конечности скорости распространения эл.-магн. вз-ствий. Это означает, что при изменении плотности заряда или тока, порождающих эл.-магн. поле, в нек-рой точке пр-ва на расстоянии R от них поле изменится спустя время t=R/c. Вследствие конечной скорости распространения эл.-магн. вз-ствий возможно существование электромагнитных волн, частным случаем к-рых (как впервые показал Максвелл) явл. световые волны.

Эл.-магн. явления протекают одинаково во всех инерциальных системах отсчёта, т. е. удовлетворяют относительности принципу. В соответствии с этим М. у. не меняют своей формы при переходе от одной инерц. системы отсчёта к другой (релятивистски инвариантны). Выполнение принципа относительности для эл.-магн. процессов оказалось несовместимым с классич. представлениями о пр-ве и времени, потребовало пересмотра этих представлений и привело к созданию спец. относительности теории (А. Эйнштейн, 1905). Форма М. у. остаётся неизменной при переходе к новой инерц. системе отсчёта, если пространств. координаты и время, векторы поля E, Н, В и D, плотность тока j и плотность заряда r изменяются в соответствии с Лоренца преобразованиями. Релятивистски инвариантная форма М. у. подчёркивает тот факт, что электрич. и магн. поля образуют единое целое.

М. у. описывают огромную область явлений. Они лежат в основе электротехники и радиотехники и играют важную роль в развитии таких актуальных направлений совр. физики, как физика плазмы и проблема управляемого термоядерного синтеза, магнитная гидродинамика, нелинейная оптика, конструирование ускорителей заряженных частиц, астрофизика и т. д. М. у. неприменимы лишь при больших частотах эл.-магн. волн, когда становятся существенными квант. эффекты, т. е. когда энергия отд. квантов эл.-магн. ноля — фотонов — велика и в процессах участвует сравнительно небольшое число фотонов.

Физический энциклопедический словарь. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983.

МАКСВЕЛЛА УРАВНЕНИЯ

Содержание:

1. Краткая история 

2. Каноническая форма 

3. Максвелла уравнения в интегральной форме 

4. Общая характеристика Максвелла уравнений 

5. Максвелла уравнения для комплексных амплитуд 

6. Алгебраические Максвелла уравнения 

7. Материальные уравнения 

8. Граничные условия 

9. Двойственная симметрия Максвелла уравнений 

10. Максвелла уравнения в четырёхмерном представлении 

11. Лоренц-инвариантность Максвелла уравнений 

12. Лагранжиан для электромагнитного поля 

13. Единственность решений Максвелла уравнений 

14. Классификация приближений Максвелла уравнений 

15. Максвелла уравнения в различных системах единиц 

Максвелла уравнения - ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. электродинамики, см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.

1. Краткая история

Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био - Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл.-магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям "эфира", но уже в "Трактате об электричестве и магнетизме" (1873) эл.-магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл.-магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме черезкватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.

2. Каноническая форма

Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E, напряжённости магнитного поля H, векторов электрической индукции D и магнитной индукции В.M. у. связывают их между собой, сплотностью электрического заряда и плотностью электрического тока J, к-рые рассматриваются как источники:

Здесь использована Гаусса система единиц (о записи M. у. в др. системах см. в разделе 15). Входящие в (1) - (4) величины EDj являются истинными, или полярными, векторами (а величина r - истинным скаляром), поля H к В- псевдовекторами, или аксиальными векторами. Все эти величины предполагаются непрерывными (вместе со всеми производными) ф-циями времени t и координат Следовательно, в ур-ниях (1) - (4) не учитывается ни дискретная структура электрич. зарядов и токов, ни квантовый характер самих полей. Учёт дискретности истинных источников может быть произведён даже в доквантовом (классич.) приближении с помощьюЛоренцаМаксвелла уравнений.

3. Максвелла уравнения в интегральной форме

Используя ГауссаОстроградского формулу и С такса формулу, ур-ниям (1) - (4) можно придать форму интегральных:

Криволинейные интегралы в (1a),(2a) берутся по произвольному замкнутому контуру (их наз. циркуляция-ми векторных полей), а стоящие в правых частях поверхностные интегралы - по поверхностям, ограниченным этими контурами (опирающимся на них), причём направление циркуляции (направление элемента контура ) связано с направлением нормали кS (вектор ) правовинтовым соотношением (если в качестве исходного выбранопространство с правыми системами координат). В интегралах по замкнутым поверхностям (S). в (3а), (4а) направление вектора элемента площади совпадает с наружной нормалью к поверхности;V- объём, ограниченный замкнутой поверхностью S.

M. у. в форме (1a) - (4a) предназначаются не только для изучения топологич. свойств эл.-магн. полей, но и являются удобным аппаратом решения конкретных задач электродинамики в системах с достаточно высокой симметрией или с априорно известными распределениями полей. Кроме того, в матем. отношении эта система ур-ний содержательнее системы (1) - (4), поскольку пригодна для описания разрывных, нодиффе-ренцируемых распределений полей. Но в отношении физ. пределов применимости обе системы ур-ний равнозначны, т. к. любые скачки полей в макроэлектродинамике должны рассматриваться как пределы микромасштабно плавных переходов, с тем чтобы внутри них сохранялась возможность усреднения ур-ний Лоренца - Максвелла. С этими оговорками резкие скачки можно описывать и в рамках M. у. (1) - (4), прибегая к аппарату обобщённых функций.

Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл.-магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a) есть обобщение Био - Савара закона (с добавлением к току максвелловскогосмещения тока).

Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через "магн. ток смещения"

где - плотность "магн. тока смещения", ФВ - магн. поток. Ур-ние (За) связывают с именем Гаусса , установившим соленоидальность поляВ, обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и "истинный" магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) - магн. заряд 

где - плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).