Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матан.docx
Скачиваний:
76
Добавлен:
30.04.2015
Размер:
710.02 Кб
Скачать

22.Интегрирование по частям Интегрирование по частям в неопределенном интеграле

Метод вычисления интегралов, называемый интегрированием по частям, основан на правиле дифференцирования произведения.

Пусть — функции, дифференцируемые на некотором промежутке . Тогда, как известно, дифференциал произведения этих функций вычисляется по формуле

Взяв неопределенный интеграл от обеих частей этого равенства, получим:

 Так как , а ,

то получаем: , откуда .

Поскольку уже содержит произвольную постоянную, в правой части полученного равенства можно опустить и записать равенство в виде

(1)

Полученная формула называется формулой интегрирования по частям.

При выводе формулы (1) мы предположили, что функции и дифференцируемы. Этой формулой обычно пользуются в тех случаях, когда подынтегральное выражение проще, чем подынтегральное выражение .

Заметим, что одно и то же подынтегральное выражение можно различными способами записать в виде . Например,

и т. д. Поэтому иногда приходится испытывать различные формы такой записи, прежде чем метод приведет к успеху. Обычно стараются подынтегральное выражение разбить на части и так, чтобы вид был не сложнее, чем вид , а вид проще, чем вид . В частности, полезно иметь в виду, что для таких функций, как , производные имеют вид более простой, чем сами функции. Поэтому в большинстве случаев эти функции удобно принимать за функцию.

Пример 1. Вычислим по частям неопределенный интеграл .

Решение. Положим . Тогда .

Используя формулу интегрирования по частям (1), получаем:

Замечание. При нахождении не пишут промежуточную произвольную постоянную , так как она не оказывает влияния на окончательный результат.

Интегрирование заменой переменной

Суть данного метода заключается в том, что в рассмотрение вводится новая переменная интегрирования или, что тоже самое, делается подстановка. После этого заданный в условии интеграл сводится либо к табличному интегралу, либо к нему сводящемуся.

Если в неопределенном интеграле сделать подстановку , где функция - функция с непрерывной первой производной, то тогда и согласно свойству 6 неопределенного интеграла имеем, что:

Эта формула называется формулой замены переменной в неопределенном интеграле.

Задание. Найти интеграл 

Решение. Сделаем замену переменной: , далее приведем интеграл к табличному виду и решим его. В конце решения делаем обратную замену.

Ответ. 

Следствия из метода интегрирования заменой переменной

Используя метод подстановки, можно получить следующие соотношения для некоторых интегралов, которые рационально использовать уже в конечном виде, а не каждый раз производить вычисления:

то есть

Аналогично можно показать, что

Подобные соотношения можно было вывести и с использованием метода внесения под дифференциал.

Первообразная и неопределенный интеграл, их свойства.

Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называетсянеопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

  1. Производная результата интегрирования равна подынтегральной функции.

  2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

  3. , где k – произвольная константа. Коэффициент можно выносить за знак неопределенного интеграла.

  4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

  • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;

  • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.