Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия 1.doc
Скачиваний:
20
Добавлен:
01.05.2015
Размер:
945.66 Кб
Скачать

Молекулярность реакции

Молекулярность элементарной реакции — число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.

Мономолекулярные реакции — реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):

H2S → H2 + S

Бимолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):

СН3Вr + КОН → СН3ОН + КВr

Тримолекулярные реакции — реакции, элементарный акт которых осуществляется при столкновении трех частиц:

О2 + NО + NО → 2NО2

Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность — механизм реакции.

21) Скорость химической реакции. Факторы, влияющие на скорость. Правило Вант-Гоффа. Температурный коэффициент скорости реакции. Понятие об энергии активации. Уравнение Аррениуса.

Правило Вант-Гоффа — эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два — четыре раза.

Уравнение, которое описывает это правило следующее:

где  — скорость реакции при температуре ,  — скорость реакции при температуре ,  — температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиваться в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа применимо только для реакций с энергией активации 60-120 кДж/моль в температурном диапазоне 10-400oC. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса.

Уравне́ние Арре́ниуса устанавливает зависимость константы скорости химической реакции от температуры .

Согласно простой модели столкновений химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекул этих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённый энергетический барьер, чтобы молекулы начали друг с другом реагировать. То есть молекулы должны обладать некой минимальной энергией (энергия активации ), чтобы этот барьер преодолеть. Из распределения Больцмана для кинетической энергии молекул известно, что число молекул, обладающих энергией , пропорционально . В результате скорость химической реакции представляется уравнением, которое было получено шведским химиком Аррениусом из термодинамических соображений:

Здесь характеризует частоту столкновений реагирующих молекул,  — универсальная газовая постоянная.

Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции , числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10°С. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций находится в пределах от 2... 4.

Температурный коэффициент определяют в соответствии с так называемым «правилом Вант-Гоффа», которое математически выражается уравнением

v2/v1 =  (T2 T1)/10,

где v1 и v2 скорости реакции при температурах Т1 и Т2;  температурный коэффициент реакции.

ЭНЕРГИЯ АКТИВАЦИИ - разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах — от нескольких до Энергия активации 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным). Как статистическую величину Э. а. следует отличать от пороговой энергии, или энергетического барьера, — минимальной энергии, которой должна обладать одна пара сталкивающихся частиц для протекания данной элементарной реакции.

         В рамках представлений теории абсолютных скоростей реакций Э. а. — разность между значениями средней энергии активированных комплексов и средней энергии исходных молекул. В результате работ Я. Вант-Гоффа и С. Аррениуса, посвященных изучению влияния температуры на скорость химической реакции. Константа скорости реакции k связана с Э. а. (Е) уравнением Аррениуса:

       

  k = koe-E/RT

        

где R — Газовая постоянная, Т — абсолютная температура в К, ko — постоянная, называемая предэкспоненциальным множителем константы скорости.

22) Скорость химической реакции. Факторы, влияющие на скорость. Катализаторы. Гомогенный и гетерогенный катализ.

Катализа́тор — химическое вещество, ускоряющее или замедляющая реакцию, но не входящее в состав продуктов реакции. Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Важно понимать, что катализатор участвует в реакции. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) повторяется.

Условно катализаторы можно разбить на две группы.

К первой группе относятся вещества, которые в условиях реакции дают значительно больше активных частиц ведущих цепной процесс. Наглядные примеры щелочной и кислотный гидролиз сложных эфиров.

Ко второй группе относятся катализаторы, увеличивающие концентрацию промежуточного соединения. Эти катализаторы образуют комплекс с обеими исходными насыщенными молекулами и электронная изомеризация протекает через промежуточное образование химических связей с катализатором.

механизмы действия катализатора это :

  1. увеличение концентрации  активных частиц в реакционной смеси;

  2. образование промежуточных соединений с обоими из реагентов реакции;

  3. химическая активация.

Если катализатор и реагирующие вещества находятся в одном агрегатном состоянии, обычно газообразном или жидком, то катализ называется гомогенным. В роли катализаторов в гомогенном катализе часто выступают растворы кислот, оснований, солей d-элементов, растворители. Катализ является гетерогенным, если катализатор и реагирующие вещества находятся в разных агрегатных состояниях или образуют самостоятельные фазы. В роли катализаторов в этом случае чаще всего выступают твердые вещества, обычно d-элементы или их соединения.

Гомогенный катализ

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

H2О2 + I → H2О + IO

H2О2 + IO → H2О + О2 + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

Гетерогенный катализ

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела — катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель.

Механизм гетерогенного катализа сложнее, чем у гомогенного. Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

  1. Диффузия реагирующих веществ к поверхности твердого вещества

  2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их

  3. Химическая реакция между реагирующими молекулами

  4. Десорбция продуктов с поверхности катализатора

  5. Диффузия продукта с поверхности катализатора в общий поток

23) Дисперсные системы. Классификация дисперсных систем. Коллоидные растворы. Строение коллоидной частицы, определение её заряда. Мицелла. Коагуляция коллоидного раствора. Пептизация осадка.

Диспе́рсная систе́ма — это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).

Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

ВИДЫ

По степени раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10-5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10-7 до 10-9м. Если фиксировать внимание на двух основных компонентах дисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз:

свободнодисперсные системы и сплошные (или связнодисперсные) системы . В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивление деформации сдвига. Их называют гелями.

Дисперсион-ная среда Дисперс-ная фаза Примеры дисперсных систем

Твердая Твердая Рубиновое стекло; сплавы; Твердая Жидкая Жемчуг, вода в граните, вода в бетоне, Твердая Газо- образн пенобетоны, пемза, Жидкая Твердая Суспензии, краски, пасты, золи, Жидкая Жидкая молоко, нефть, маргарин, Жидкая Газо- образная Пены,

Газообразная Твердая космическая пыль, аэрозоли

Газообразная Жидкая Туманы, газы в момент сжижения

Газообразная Газо- образная Коллоидная система не образуется

Коллоидными растворами называются гетерогенные дисперсные системы, в которых частицы «растворенного» вещества обладают ультрамикроскопической (коллоидной) степенью дробления. Поперечник частиц дисперсной фазы в этих системах лежит в пределах 1 -100 нм. Как известно, устойчивость коллоидных растворов является следствием взаимодействия трех факторов: сил поверхностной энергии, заряда частиц и степени их лиофильности.

Строение коллоидных частиц

Коллоидный раствор можно получить обменной реакцией. Рассмотрим образование иодида серебра при сливании разбавленных растворов нитрата серебра и иодида калия:

AgNO3 + KI = AgI + KNO3,

.

Если иодид калия и нитрат серебра взяты в эквивалентных количествах, частицы AgI растут, достигая размеров, превосходящих размеры коллоидных частиц, и быстро выпадают в осадок. Если же реакцию проводят с разбавленными растворами, то осадок не выпадает, а образуется коллоидный раствор иодида серебра. Основную массу мицеллы составляет ядро – мельчайший кристаллик иодида серебра, состоящий из большого числа молекул: m(AgI).

Полученное ядро является носителем свободной поверхностной энергии, поэтому на его поверхности идет адсорбционный процесс. Согласно правилу Пескова – Фаянса, на поверхности ядра мицеллы адсорбируются ионы, имеющиеся в составе ядра, т.е. адсорбируются ионы, находящиеся в избытке. Если получать раствор при избытке иодида калия, то адсорбироваться будут ионы иода. Ионы иода достраивают кристаллическую решетку ядра, образуя адсорбционный слой, и придают ядру отрицательный заряд: m[AgI]nI־. Эти ионы, адсорбирующиеся на поверхности ядра и придающие ему заряд, называются потенциалопределяющими ионами.

В растворе находятся также ионы противоположные по знаку потенциалопределяющим ионам, их называют противоионами. В данном случае это катионы К+, которые электростатически притягиваются потенциалопределяющими ионами адсорбционного слоя, образуя гранулу:

{m [AgI]nI־ (nx)K+}x־

В адсорбционном слое гранулы преобладают потенциалопределяющие ионы I־, число которых можно обозначить n, а количество противоионов K+– (n-x). Оставшаяся часть противоионов образует диффузный слой ионов. Ядро с адсорбционным и диффузным слоями называется мицеллой:

{m [AgI]nI־ (n - x)K+}x־xK+

Если получать золь иодида серебра при избытке нитрата серебра, т.е. при избытке Ag+, то коллоидная частица благодаря адсорбции ионов Ag+ на поверхности ядра получит положительный заряд.

{m[AgI]nAg+(n - x)NO3}x+xNO3 (гранула положительна)

{m[AgI]nI־(n - x)K+}x־xK+ (гранула отрицательна)

Числа m, n, x в зависимости от условий приготовления золей могут меняться в широких пределах, т.е. мицелла не имеет строго определенного состава.

Таким образом, мицелла – электрически нейтральная коллоидная частица, способная к самостоятельному существованию. Она определяет все основные свойства коллоидной системы. Состоит мицелла из ядра кристаллического или аморфного строения, адсорбционного (неподвижного относительно частицы) и диффузного (подвижного) слоев. При пропускании постоянного тока через коллоидный раствор к электродам движутся не мицеллы, которые электронейтральны, а только гранулы.

Наличие одноименного заряда у всех частиц золя является фактором его устойчивости. Заряд препятствует слипанию и укрупнению коллоидных частиц, т.е. коагуляции. Стабильность (устойчивость) коллоидных частиц объясняется тем, что на поверхности ядер адсорбируется определенный вид потенциалопределяющих ионов. Те электролиты, ионы которых являются потенциалопределяющими, следует считать стабилизаторами, а ионы, которые адсорбируются поверхностью ядер, - стабилизирующими ионами. При этом на ядре адсорбируются те ионы стабилизатора, которые содержат элементы, общие с ядром.

КОАГУЛЯЦИЯ (от лат. coagulatio—створаживание), характерный для коллоидных растворов (золей) процесс, заключающийся либо в выпадении дисперсной фазы (см. Дисперсные системы) в осадок либо в застывании всего коллоидного раствора в студень— гель. В обоих случаях имеет место слияние отдельных мельчайших частиц дисперсной фазы, их укрупнение, или агрегация. Предпосылкой К. является изменение стабильности коллоидного раствора разрушением или ослаблением тех факторов, которые обеспечивают эту устойчивость и сводятся для лиофобных коллоидов к электрическому заряду частиц, для лиофильных—к б. или м. тесной хим. связи поверхности частиц с растворителем.—К. может вызываться различными внешними воздействиями на коллоидный раствор: термическими влияниями (нагреванием или охлаждением), действием света, электричества, механическими влияниями (встряхиванием) и т. п. Но наиболее изучена К. под влиянием прибавления различных веществ, особенно растворов электролитов в случае лиофобных золей.

Пептизация осадка

Переход осадка, образующегося при коагуляции, во взвешенное состояние под влиянием физико-химических воздействий. В основе Пептизации лежит изменение структуры осадков   (коагулятов). Пептизацию могут вызвать различные вещества, добавляемые к осадку. Различают несколько видов Пептизации: адсорбционную, диссоционную и т. д.

24) Растворы. Растворимость веществ, факторы, влияющие на растворимость. Способы выражения концентрации растворов.

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия.

Раствор — однофазная система переменного состава, состоящая из двух или более компонентов. Растворы — гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов.

Растворитель — компонент, агрегатное состояние которого не изменяется при образовании раствора. В случае же растворов, образующихся при смешении газа с газом, жидкости с жидкостью, твёрдого вещества с твёрдым, растворителем считается компонент, количество которого в растворе преобладает.

Образование того или иного типа раствора обусловливается интенсивностью межмолекулярного, межатомного, межионного или другого вида взаимодействия, то есть, теми же силами, которые определяют возникновение того или иного агрегатного состояния. Отличия: образование раствора зависит от характера и интенсивности взаимодействия частиц разных веществ

РАСТВОРИМОСТЬ, способность в-ва образовывать с др. в-вом (или в-вами) гомог. смеси с дисперсным распределением компонентов. Растворимость определяется физ. и хим. сродством молекул р-рителя и растворяемого в-ва, соотношением энергий взаимод. однородных и разнородных компонентов р-ра. Как правило, хорошо раств. друг в друге подобные по физ. и хим. св-вам в-ва (эмпирич. правило "подобное раств. в подобном"). В частности, в-ва, состоящие из полярных молекул, и в-ва с ионным типом связи хорошо раств. в полярных р-рителях (воде, этаноле, жидком аммиаке), а неполярные в-ва хорошо раств. в неполярных р-рителях (бензоле, сероуглероде).

На процесс растворения  влияют  следующие основные  факторы  (природа

растворяемого вещества и растворителя, их агрегатное состояние, температура,

давление, наличие в растворе посторонних веществ).

1. Природа

растворяемого вещества и растворителя.

                                                      

Существует классическое правило “подобное

растворяется в подобном”. Полярные вещества (ионные соединения и соединения с

полярной ковалентной связью) лучше растворяются в полярнрм растворителе. Для

растворения неполярных веществ необходимо применять неполярные соединения.

2. Температура.

Давление.

О влиянии температуры  на   растворимость  можно

говорить только в общих чертах, т.к. этот процесс не однозначный. Как правило,

повышение температуры увеличивает  растворимость  тех веществ, процесс

растворимости  которых эндотермичный, т.е. идет с поглощением теплоты