Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные законы геометрической оптики.doc
Скачиваний:
52
Добавлен:
09.05.2015
Размер:
294.91 Кб
Скачать
  1. Основные законы геометрической оптики

Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ →0.

Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

При́нцип Ферма́ (принцип наименьшего времени Ферма) в геометрической оптике — постулат, предписывающий лучу света двигаться из начальной точки в конечную точку по пути, минимизирующему (реже — максимизирующему) время движения (или, что то же самое, минимизирующему оптическую длину пути). В более точной формулировке[1]: свет выбирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения; другими словами, любое малое изменение этого пути не приводит в первом порядке к изменению времени прохождения.

  1. Закон полного внутреннего отражения.

Вну́треннее отраже́ние — явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, что волна падает из среды, где скорость ее распространения меньше (в случае световых лучей это соответствует бо́льшему показателю преломления).Неполное внутреннее отражение — внутреннее отражение, при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый. Зако́н Брю́стера — закон оптики, выражающий связь показателей преломления двух диэлектриков с таким углом падения света, при котором свет, отражённый от границы раздела диэлектриков, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения. При этом преломлённый луч частично поляризуется в плоскости падения, и его поляризация достигает наибольшего значения (но не 100%, поскольку от границы отразится лишь часть света, поляризованного перпендикулярно к плоскости падения, а оставшаяся часть войдёт в состав преломлённого луча). Угол падения, при котором отражённый луч полностью поляризован, называется углом Брюстера.

  1. Формула тонкой линзы

Формула тонкой линзы связывает d (расстояние от предмета до оптического центра линзы), f (расстояние от оптического центра до изображения) с фокусным расстоянием F

;

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде — двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), и фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

4) Недостатки оптических систем

Одним из самых существенных недостатков рефрактора является хроматическая аберрация. Вторым недостатком как линзового, так и зеркального телескопов является сферическая аберрация. Объектив собирает пучок параллельных лучей не строго в одной точке. Края объектива создают изображение, расположенное ближе к объективу, а центральные части объектива образуют изображение более удаленное от него. Это явление называется продольной сферической аберрацией. Наименьший диаметр изображения точечного источника света называется поперечной сферической аберрацией. Сферическую аберрацию можно уменьшить соответствующими расчетами поверхностей. Влияние сферической аберрации можно также уменьшить диафрагмированием объектива, но это приводит к уменьшению светосилы и проницающей способности, что допустимо только при наблюдениях Луны или Солнца.Для наклонных пучков лучей существенна еще одна аберрация, которая называется астигматизмом. Она возникает по следующей причине - если рассматривать различные сечения наклонного пучка, то оказывается, что фокусное расстояние зависит от ориентировки в пространстве этой плоскости или от ориентировки сечения объектива этой плоскостью. Сечение объектива в направлении наклона пучка лучей носит название меридионального сечения, сечение же в перпендикулярном направлении - сагиттального. Фокусное расстояние для меридиональных лучей не совпадает с фокусным расстоянием для сагиттальных, что и приводит к астигматизму. В результате изображения на краях пластинки вытягиваются. Если влияние астигматизма устранено или ослаблено, то такой объектив называется анастигматом. Еще одним недостатком оптических систем является кривизна поля. У некоторых объективов или зеркал «уложить» все изображение в одну плоскость оказывается невозможным. Расстояние до фокуса оказывается зависящим от наклона лучей к главной оптической оси. Такое поле иногда называют кривым. При этом поле может быть выпуклым или вогнутым, в зависимости от свойств объектива. В таком случае фотопластинку или фотопленку приходится выгибать для того, чтобы как центральные, так и краевые части поля зрения были в фокусе.

5)Биологический микроскоп

Микроскоп предназначался для медицинских и биологических исследований прозрачных объектов в проходящем свете и для их фотографирования. Микроскоп позволяет исследовать непрозрачные объекты в отражённом свете по методу темного и светлого поля.Микроскоп укомплектовывается тремя компенсационными окулярами (увеличения соответственно 5 Х, 7 Х и 10 Х) и четырьмя объективами с увеличениями 10 Х, 20 Х, 60 Х и 90 Х. Микроскоп имеет увеличения:

с окулярами К-5 — 50 Х, 100 Х, 300 Х и 450 Х;

с окулярами К-7 — 70 Х, 140 Х, 420 Х и 630 Х;

с окулярами К-10 — 100 Х, 200 Х, 600 Х и 900 Х.

6)Волновая природа света

Первые теории о природе света - корпускулярная и волновая - появились в середине 17 века. Согласно корпускулярной теории (или теории истечения) свет представляет собой поток частиц (корпускул), которые испускаются источником света. Эти частицы движутся в пространстве и взаимодействуют с веществом по законам механики. Эта теория хорошо объясняла законы прямолинейного распространения света, его отражения и преломления. Основоположником данной теории является Ньютон.Согласно волновой теории свет представляет собой упругие продольные волны в особой среде, заполняющей все пространство - светоносном эфире. Распространение этих волн описывается принципом Гюйгенса.

7)Оптические характеристики вещества

Спектр поглощения — зависимость показателя поглощения вещества от длины волны (или частоты, волнового числа, энергии кванта и т. п.) излучения. Он связан с энергетическими переходами в веществе. Для различных веществ спектры поглощения различны.

Различают спектры внеш. и внутр. отражения. Первые, в свою очередь, делятся на спектры зеркального отражения, когда падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей пов-сти, а угол отражения равен углу падения, и спектры диффузного отражения, когда отраженные лучи рассеиваются по разным направлениям. Характер внеш. отражения излучения определяется сротно-шением между длиной волны l падающего излучения и размерами неровностей отражающей пов-сти. При неровностях, размеры к-рых меньше l, наблюдается зеркальное отражение, в остальных случаях-диффузное отражение (рассеянное излучение). Практически отраженное излучение имеет смешанный характер; при специально выбранных условиях преобладает вклад того или иного вида отражения. Зеркальное отражение получают с применением гладкой плоской пов-сти, в частности при исследовании мол. структур слоев, нанесенных на разл. подложки, при изучении явлений адгезии, адсорбции, электрокатализа, ингибирова-ния коррозии, а также при определении оптич. постоянных (напр., действительной и мнимой частей показателя преломления). В последнем случае измеряют отражат. способность в-ва R(v) = I0/I п, где I0 и I п -интенсивности отраженного и падающего излучения соотв. для спектра с волновым числом l (v = 1/l). При этом пучок света должен; быть параллельным и падать на плоскую полированную пов-сть образца. Если угол падения равен 0, то соотношение между показателем отражения и комплексным показателем преломленияопределяется ф-лой Френеля:

где f(v)-разность фаз отраженного и падающего пучков; = n(v) Чik(v), i-мнимая единица, n(v)-обычный показатель преломления, k(v)-т. наз. показатель поглощения. При умножении этого ур-ния на комплексно-сопряженное получается выражение для отражат. способности:

Из приведенных ур-ний можно найти выражения для n(v) и k(v).

Разность фаз f(v) непосредственно из эксперим. данных определить нельзя. Для ее расчета выполняют ряд мат. преобразований.

Установив значения R, k, n и , можно определить диэлектрич. проницаемость анизотропных сред, к-рая в случае переменных электромагн. полей является комплексной величиной:и связана с комплексным показателем преломлениясоотношениемТангенс угла диэлектрич. потерь tgd равен отношению e:/e'. Т. обр., для нахождения всех этих оптич. постоянных достаточно измерить спектры отражения и определить величину R(v); все расчеты выполняют с помощью ЭВМ.

Зная оптич. постоянные в-в, можно в спектрах отражения выделить смещение и искажение форм спектральных полос и изменение их интенсивности, вызванные не оптич. эффектами, а изменениями структуры отражающей пов-сти или хим. р-циями. Так, напр., при исследовании спектра отражения пленки из полиметилметакрилата, нанесенной на подложку из золота, полоса, соответствующая валентному колебанию С=О, оказывается смещенной в высокочастотную область (примерно на 10 см -1) и имеет асимметричную форму. Такие искажения возрастают при увеличении толщины пленки и уменьшении комплексного показателя преломления материала подложки. На искажение полос сильно влияет также угол падения излучения и поляризация падающего пучка. Для оценки искажений в спектрах отражения определяющую роль играет или действительная, или мнимая часть комплексного показателя преломления подложки в зависимости от оптич. св-в последней. При использовании поляризованного излучения можно определить пространств. ориентацию молекул, образующих пленку на отражающей подложке, и характер их взаимод. с подложкой. Однако необходимо предварительно тщательно учесть роль оптич. эффектов в искажении спектров отражения.

Спектры, полученные при зеркальном отражении, представляют собой суперпозицию спектров отражения и пропускания. Обычно наилучшие результаты получают при угле падения излучения ок. 45° и при толщине покрытий ок. 0,01 мм. При малых толщинах пленок (0,01 мм) и угле падения 90° спектры отражения не м. б. получены, т. к. образующаяся стоячая волна электрич. поля имеет на отражающей пов-сти узел и молекулы в-ва не могут взаимод. с излучением. Кол-во отраженной энергии при скользящем падении луча м. б. значительно больше, причем проникновение излучения будет более глубоким, т. е. будет исследоваться большая толщина образца.

Обычно при внеш. отражении падающий луч проникает в образец на глубину 10-20 мкм. С использованием ИК фурье-спектрофотометров м. б. исследованы-слои толщиной от 5 до 500 мкм при площади исследуемого образца до 1 мм 2 за время от 2 до 30 мин. В случае металлич. пов-стей интенсивность спектров отражения м. б. повышена путем использования излучения, поляризованного в плоскости, параллельной пов-сти металла.

Спектры диффузного отражения обычно малоинтенсивны, т. к. удается собрать и направить в спектральный прибор только очень малую часть рассеянного (отраженного) излучения. Поэтому в этом случае необходимо применять ИК фурье-спектрофотометры, обладающие высокими светосилой и соотношением сигнал:шум (ок. 105). Получаемые при диффузном отражении спектры часто оказываются подобными спектрам пропускания. Исследуемыми образцами м. б. массивные твердые тела, порошки (иногда содержащие разл. наполнители - КВr, КСl, CsI, прозрачные в исследуемой области спектра), волокнистые (ткани, войлок) и ячеистые (напр., электроды с разл. наполнителями) материалы, пены, суспензии и аэрозоли, разрядные промежутки с электронными запалами для анализа возможных загрязнений и т. д. Перед исследованием твердый образец обычно натирают на наждачную бумагу на основе карбида кремния тонкого помола, спектр к-рого либо не проявляется в спектре исследуемого образца, либо м. б. вычтен из полученного спектра и использоваться как спектр сравнения. Спектры отражения при диффузном рассеянии могут наблюдаться от достаточно малых кол-в в-ва, напр. от пятен на хрома-тографич. пластине. Метод используют также для определения диэлектрич. св-в образцов. Зако́н Бугера — Ламберта — Бера — физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где интенсивность входящего пучка, — толщина слоя вещества, через которое проходит свет,показатель поглощения (не путать с безразмерным показателем поглощения , который связан сформулой, где— длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

8) Взаимодействие света с веществом

Распространяясь в веществе электромагнитное поле световой волны вызывает вынужденные колебания связанных зарядов (электронов, ионов). Колеблющиеся с частотой вынуждающей силы заряды являются источником вторичных волн. Если среда однородна и изотропна, то в результате наложения первичной и вторичной волн образуется проходящая волна, фазовая скорость которой зависит от частоты. Если в среде имеются неоднородности, то дополнительно происходит рассеяние света. На границе раздела двух сред в результате интерференции первичной и вторичной волн образуется отраженная и преломленная волна.

Прохождение света через вещество также сопровождается поглощением света, т.е. потерей энергии волны. Итак, дисперсия света – это зависимость показателя преломления вещества от частоты световой волны . Эта зависимость не линейная и не монотонная. Области значения ν, в которых

 

(или    )

 

 

соответствуют нормальной дисперсии света (с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров.

Дисперсия называется аномальной, если

 

(или   ),

 

т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.

9) Спектральная плотность

Спектральная плотность потока излучения – это функция, показывающая распределение энергии по спектру излучения:

        (2.1.1)

Абсолютно черное тело - это физическая абстракция(модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

- для абсолютно черного цвета

10) Законы излучения абсолютно черного тела

Первый закон излучения Вина

В 1893 году Вильгельм Вин, исходя из представлений классической термодинамики, вывел следующую формулу:

  • где uν — плотность энергии излучения

  • ν — частота излучения

  • T — температура излучающего тела

  • f — функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина. Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана-Больцмана, но нельзя найти значения постоянных, входящих в эти законы. Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином "закон смещения Вина" называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

  • где uν — плотность энергии излучения

  • ν — частота излучения

  • T — температура излучающего тела

  • C1,C2 — константы.

Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина. Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C1 и C2. С учётом этого, второй закон Вина можно записать в виде:

  • где uν — плотность энергии излучения

  • ν — частота излучения

  • T — температура излучающего тела

  • h — постоянная Планка

  • k — постоянная Больцмана

  • c — скорость света в вакууме

Закон Релея — Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Релея — Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой. Тем не менее закон излучения Рэлея — Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея — Джинса при . Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка - Зависимость мощности излучения чёрного тела от длины волны Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка: гдеI(ν)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + dν. Эквивалентно, , гдеu(λ)dλ — мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + dλ.