Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4.5. Транзакции. Механизм транзакций

.doc
Скачиваний:
43
Добавлен:
11.05.2015
Размер:
91.65 Кб
Скачать

14

4.5. Транзакции. Механизм транзакций

Транзакция - это логический блок, объединяющий одну или более операций в базе данных и позволяющий подтвердить или отменить результаты работы всех операций в блоке

Возможность отмены - только одно из свойств. Определение обычно дается очень обтекаемое, транзакция - последовательность операций с базой данных, логически выполняемая как единое целое. Транзакция обладает свойствами атомарности, согласованности, изоляции и долговременности (по-английски ACID - Atomicity, Consistency, Isolation, Durability).

Транзакция - это механизм, позволяющий объединять различные действия в логические блоки и обеспечить возможность принимать решения об успешности действий всего блока операций в целом

Обратите внимание на смещение акцента в определении: "транзакция - это механизм..."! Именно от представления о транзакции как о механизме, выполняющем определенные функции, мы и будем отталкиваться в дальнейших рассуждениях.

Давайте разберемся в некоторых фактах, которые необходимо знать для того, чтобы двигаться дальше в понимании транзакций.

  1. Механизм транзакций обязательно используется для ВСЕХ операций в базе данных (о некоторых особых случаях будет рассказано ниже). Возможно, некоторые разработчики, пользующиеся высокоуровневыми инструментами разработки приложений баз данных, могут заявить, что они никогда не применяли транзакции и не видят в них нужды. Но это всего лишь означает, что всю работу по управлению транзакциями брал на себя инструмент разработки (и вряд ли он управлял ими достаточно эффективно!).

  2. Сочетание слов "логический блок" напоминает нам, что транзакции изначально задумывались и реализовывались как механизм управления бизнес- логикой в базах данных. Это означает, что объединением некоторой последовательности операций в транзакцию управляет клиентское приложение базы данных (а в конечном итоге - пользователь).

  3. Подтверждение или отмена результатов операций, объединенных одной транзакцией, не означает, что все эти операции выполнились успешно (или закончились ошибкой). Подтверждение транзакции - это решение о том, что следует оставить в базе данных результаты работы всех операций, входящих в транзакцию, вне зависимости от того, как они закончились. Если клиентское приложение (фактически человек-пользователь) решило подтвердить результаты транзакции, то при этом подтвердятся результаты всех успешных действий (а у неуспешных действий просто не будет результатов, поэтому произойдет лишь формальное подтверждение). Если клиентское приложение решило откатить транзакцию, то все результаты всех действий и успешные, и неуспешные, будут аннулированы.

Хочется отметить, что начинающие пользователи часто ставят знак равенства между подтверждением транзакции и успешностью проведенных в ее рамках действий. На самом деле здесь нет четкой связи - решение о подтверждении транзакции принимается на основании логики клиентского приложения (проще говоря, зависит от произвола пользователя). Да, обычно если все операции в транзакции прошли успешно, то транзакция подтверждается и все полученные результаты "узакониваются", но такое поведение не является обязательным. Ведь ничто не должно мешать пользователю отменить результаты успешных операций, исходя из каких-то своих высших соображений. Пора разобраться в понятиях подтверждения ("узаконивания") и отмены (отката) транзакций. Следующий раздел внесет ясность в этот вопрос.

Изолированность транзакций

Давайте углубимся в рассмотрение того, зачем нужны транзакции в базе данных. Пример с переводом денег дает верную подсказку, представляя транзакцию как некоторый черный ящик, в котором производятся действия над содержимым базы данных. В этот ящик нельзя заглянуть до того, как транзакция завершится подтверждением или откатом. Если бы сумели все-таки заглянуть "внутрь" транзакции, в контексте которой осуществляется перевод денег, то увидели бы печальную картину, что-то вроде того, что: деньги уже ушли с одного счета, но на другой не пришли, или, наоборот, пришли, но "размножились" и существуют сразу на обоих счетах. Другими словами, "внутри" транзакции база данных в какие-то моменты находится в неправильном с точки зрения бизнес-логики состоянии Такое неправильное состояние называется "нецелостным", а правильное соответственно - "целостным".

Целостное состояние базы данных - состояние, в котором база данных содержит корректную  информацию, соответствующую правилам бизнес-логики, применяющимся в данном принижении

Отсюда следует еще одно определение транзакции:

Транзакция - механизм, позволяющий переводить базу данных из одного целостного состояния в другое

Обратите внимание на слово "позволяющий": оно подчеркивает потенциальность возможностей механизма транзакций по обеспечению целостности базы данных.

Во время выполнения транзакции результаты операций, выполняющихся в ее контексте, невидимы для остальных пользователей, вплоть до момента подтверждения. Учитывая то, что все действия выполняются в контексте транзакций, то можно утверждать следующее: результаты операций, выполняющихся в контексте одной транзакции, невидимы для операций, осуществляющихся в контексте других транзакций.

Конечно, это только в идеальном случае, когда транзакции полностью изолированы. В реальности добиться такого трудно из-за сокращения числа одновременно выполняемых транзакций, работающих с общими данными. Поэтому для каждой транзакции предусматривается уровень изоляции, выбираемый как компромисс между снижением производительности и допустимым нарушением изолированности

Давайте поясним эти мысли с помощью такого примера.

Предположим, у нас есть документ, разные части которого хранятся в нескольких таблицах - таблице заголовка и нескольких таблицах-подробностях. Очевидно, что документ должен существовать только как целостная сущность, у которой заполнены параметры заголовка и корректно определены данные в таблицах-подробностях. Также очевидно, что процесс составления документа может быть достаточно длительным - сначала пользователь введет заголовок, затем заполнит содержание и т. д. В то же время, другие пользователи должны увидеть документ в целостном виде, т. е. не может быть документа без заголовка или с некорректными данными.

В данном примере транзакция начинается в момент начала создания/редактирования документа и заканчивается после окончания этого редактирования, т. е. тогда, когда пользователь, редактирующий документ, сочтет, что документ находится в целостном состоянии.

Следует четко понимать отличия двух понятий - изолированности, когда одна транзакция не видит изменения, совершаемые в контексте другой (причем это настраивается уровнями изоляции), и целостности, когда состояние всей базы (а не с точки зрения какой-то отдельной транзакции) после завершения транзакции всегда должно соответствовать всем ограничениям предметной области (правилам бизнес-логики). В течение выполнения транзакции в принципе возможны нарушения целостности.

В результате все остальные пользователи в базе данных видят документ только в целостном состоянии, соответствующем правилам бизнес-логики для данной задачи.

Таким образом, можно сформулировать наиболее общее определение механизма транзакций:

Транзакция - это механизм, позволяющий объединять различные действия в логические блоки и обеспечить возможность принимать решения об успешности действий всего блока операций в целом. Логические блоки операций осуществляют перевод базы данных из одного целостного состояния, соответствующего бизнес-правилам задачи, в другое целостное состояние. Механизм транзакций служит для обеспечения изоляции изменений, совершаемых операциями в контексте одной транзакции, от операций в других транзакциях.

Можно считать, что это определение достаточно точно отражает понятие транзакции. Это определение применимо для всех реляционных СУБД. Однако предметом рассмотрения данной книги является InterBase, поэтому в следующих разделах мы будем рассматривать конкретные особенности механизма транзакций именно в InterBase.

Механизм транзакций в InterBase

Надо сказать, что реализация транзакций в InterBase отличается от реализации транзакции в большинстве других СУБД. Это связано с особой архитектурой баз данных InterBase, именуемой Multi Generation Architecture (MGA) - многоверсионной архитектурой.

Чтобы разобраться в реализации транзакций в InterBase, придется совершить экскурс в многоверсионную архитектуру баз данных, а также затронуть аспекты низкоуровневой реализации ядра InterBase. Возможно, в процессе чтения этого раздела необходимо будет обратиться к главе "Структура базы данных InterBase".

Взаимодействие транзакций

Интересен процесс определения, является ли текущая версия мусором или, возможно, она еще нужна какой-то транзакции.

Для описания этого процесса придется ввести несколько важных понятий. Прежде всего, надо отметить, что все определения строятся относительно какой- либо транзакции, которую называют текущей, - обычно это та транзакция, поведение которой необходимо исследовать и которой надо принять решение, что является мусором, а что нет.

Итак, определения:

Заинтересованная транзакция - это транзакция, конкурирующая с текущей. Старейшая заинтересованная транзакция (oldest interesting transaction) - это старейшая транзакция, конкурирующая с текущей транзакцией.

Каждая транзакция (и текущая тоже, разумеется) имеет "маску транзакций", которая представляет собой снимок страницы учета транзакций, начиная от старейшей заинтересованной транзакции до текущей.

Старейшая активная транзакция (oldest active transaction, OAT) - это транзакция, которая была активной в тот момент, когда запускалась самая старая из активных транзакций в момент запуска текущей.

Именно старейшая активная транзакция и занимается сборкой мусора, так как все остальные транзакции и их изменения "моложе" ее.

Обратите внимание на два момента: во-первых, старейшая активная транзакция - это не постоянно существующая транзакция, а всего лишь обязанность, которую получают транзакции; во-вторых, старейшая транзакция убирает только мусор от завершившихся транзакций, которые еще старше ее! Другими словами, следует рассматривать процесс сборки мусора динамически - как постоянную передачу обязанностей по сборке мусора от одной транзакции к другой.

Уровни изоляции транзакций

Как уже было сказано выше, транзакции обеспечивают изолирование проводящихся в их контексте изменений, так что эти изменения невидимы пользователям вплоть до подтверждения транзакции. Но вот вопрос: а должна ли транзакция видеть те изменения, которые были подтверждены другими транзакциями уже после ее запуска? Вот пример.

Допустим, у нас есть таблица с данными, к которой обращаются два пользователя одновременно - один из них изменяет данные, а второй читает. Возникает вопрос, должен ли (или может ли) пользователь, читающий таблицу, видеть изменения, производимые другим пользователем.

Должен или нет - это определяется уровнем изоляции.

Уровень изолированности транзакции определяет, какие изменения, сделанные в других транзакциях, будут видны в данной транзакции.

Каждая транзакция имеет свой уровень изоляции, который устанавливается при ее запуске и остается неизменным в течение всей ее жизни.

Транзакции в InterBase могут иметь 3 основных возможных уровня изоляции: READ COMMITTED, SNAPSHOT и SNAPSHOT TABLE STABILITY. Каждый из этих трех уровней изоляции определяет правила видимости тех действий, которые выполняются другими транзакциями. Давайте рассмотрим уровни изоляции более подробно.

  • READ COMMITTED. Буквально переводится как "читать подтвержденные данные", однако это не совсем (точнее, не всегда) так. Уровень изоляции READ COMMITTED используется, когда мы желаем видеть все подтвержденные результаты параллельно выполняющихся (т. е. в рамках других транзакций) действий. Этот уровень изоляции гарантирует, что мы НЕ сможем прочитать неподтвержденные данные, измененные в других транзакциях, и делает ВОЗМОЖНЫМ прочитать подтвержденные данные.

  • SNAPSHOT. Этот уровень изоляции используется для создания "моментального" снимка базы данных. Все операции чтения данных, выполняемые в рамках транзакции с уровнем изоляции SNAPSHOT, будут видеть только состояние базы данных на момент начала запуска транзакции. Все изменения, сделанные в параллельных подтвержденных (и разумеется, неподтвержденных) транзакциях, не видны в этой транзакции. В то же время SNAPSHOT не блокирует данные, которые он не изменяет.

  • SNAPSHOT TABLE STABILITY. Это уровень изоляции также создает "моментальный" снимок базы данных, но одновременно блокирует на запись данные, задействованные в операциях, выполняемые данной транзакцией. Это означает, что если транзакция SNAPSHOT TABLE STABILITY изменила данные в какой-нибудь таблице, то после этого данные в этой таблице уже не могут быть изменены в других параллельных транзакциях. Кроме того, транзакции с уровнем изоляции SNAPSHOT TABLE STABILITY не могут получить доступ к таблице, если данные в них уже изменяются в контексте других транзакций.

Параметры транзакций

В первом разделе этой главы была сделана попытка рассмотреть механизм работы транзакций в СУБД InterBase в целом. Теперь необходимо рассмотреть практические аспекты применяющие транзакций в InterBase.

Программисты, использующие такие современные библиотеки для доступа к базам данных InterBase, как FIBPlus, IBProvider, IBX и IBObjects (см. главу "Обзор библиотек доступа к InterBase"), имеют возможность гибко управлять параметрами транзакций для получения наилучших результатов. Поэтому имеет смысл рассматривать параметры транзакций именно в интерпретации для этих библиотек.

Настройка параметров транзакции осуществляется с помощью перечисления набора констант, определяющих поведение транзакции, например, уровень изоляции. Эти константы пришли из InterBase API и имеют следующий вид: isc_tpb_read, isc_tpb_write, isc_tpb_ read_committed и т. д.

Обычно префикс isc_tpb_ опускается и константы для определения параметров транзакции пишутся без него.

Давайте рассмотрим значение и синтаксис применения каждой константы.

Виды параметров транзакции

Все параметры транзакции можно подразделить на группы, каждая из которых отвечает за определенный момент в поведении транзакций. Эти группы приведены в таблице 1.4:

Табл 1.4. Параметры транзакций

Группы параметров

Константа

Краткое описание константы

Режим доступа

Read

Разрешает только операции чтения

write

Разрешает операции записи

Режим блокировки

Wait

Устанавливает режим отсроченного разрешения конфликтов. См. ниже раздел "Режим блокировки"

nowait

При возникновении конфликта немедленно возникает ошибка

Уровень

read_committed rec_version

Возможность читать подтвержденные данные других транзакций. Дополнительный параметр rec_version позволяет читать записи, имеющие неподтвержденные версии

read_committed no_rec_version

Возможность читать подтвержденные данные других транзакций. Дополнительный параметр no_rec_version не позволяет читать записи, имеющие неподтвержденные версии

concurrency

При запуске транзакции создается мгновенный "снимок" состояния базы данных (точнее, копируется "маска транзакций" на этот момент), поэтому изменения, сделанные в других транзакциях, не видны в этой транзакции

consistency

Аналогичен уровню concurrency, но помимо этого блокирует таблицу на запись. См. ниже

Обилие параметров впечатляет, ведь их сочетания должны покрывать все возможные нужды разработчиков приложений баз данных. Однако обычно используется лишь небольшой набор параметров для определения необходимых видов транзакций. Давайте подробно рассмотрим каждую группу параметров транзакций.

Режим доступа

Режим доступа определяет, какие операции могут осуществляться в контексте транзакции. По умолчанию (т. е. если ничего не указывать) ставится режим чтения-записи, т. е. могут осуществляться любые операции. Часто задают вопрос, имеет ли смысл запускать транзакции в режиме только для чтения, если не предполагается операций по изменению данных. Ответ: да, имеет. Особенно в последних клонах InterBase 6.x - InterBase 6.5, Yaffil и Firebird. Транзакции с режимом доступа только для чтения меньше нагружают сервер, так как не создают лишних версий записей.

Для установки режима чтения-записи используется сочетание констант read write. Обычно константы записывают в столбик одну под другой, вот так: read write

Режим блокировки

Режим блокировки определяет, как будут разрешаться конфликты. Если возникает конфликт, то у транзакции, обнаружившей конфликт, есть два выхода - либо немедленно возбудить исключение, либо подождать некоторое время, после чего опять попытаться разрешить конфликт.

Соответственно есть два варианта режима блокировки - wait и nowait. По умолчанию используется режим wait.

Конфликты, о которых идет речь, возникают как в случае чтения записей, так и в случае записи. На конфликты при чтении записей, помимо wait/nowait, влияют также установки уровня изоляции, и поэтому мы их рассмотрим в разделе про уровни изоляции. А вот на объяснение влияния режима блокировки на конфликты при записи уровень изоляции не влияет, поэтому мы сейчас рассмотрим его.

  1. Рассмотрим случай, когда транзакция А вставляет запись, но еще не подтвердила ее. Затем в рамках другой транзакции, Б, делается попытка вставить запись с тем же самым первичным ключом, уже вставлена в транзакции А. Вот здесь и начинаются отличия между режимами блокировки:

  • если транзакция Б запущена в режиме wait, то она будет ожидать завершения транзакции А, и если А завершится подтверждением (commit), то вставленная в Б запись будет признана неактуальной и возникнет ошибка Deadlock, а если она откатится (rollback), то изменения в транзакции Б будут приняты и она сможет подтвердить их (т. е. сделать commit);

  • если транзакция Б запущена в nowait, то немедленно возникнет ошибка 'lock conflict on no wait transaction'.

  1. Рассмотрим другой случай: транзакция А изменила запись, но еще не подтвердила ее изменения. Транзакция Б пытается удалить или изменять эту же самую запись. Опять влияет режим блокировки:

  • если Б в режиме wait, то она будет ждать пока А не подтвердится или не отменится; если А подтвердится, то в Б возникнет ошибка 'Deadlock - update conflict with concurrent update', - потому как А подтвердила свои изменения, изменения в Б признаются неактуальными; если же транзакция А откатится, Б получит возможность подтвердиться;

  • если Б в режиме nowait, то немедленно возникнет ошибка 'lock conflict on no wait transaction'.

Возможно, неясна практическая ценность описаний режима блокировки. Однако чуть ниже это поможет понять суть рекомендованных наборов параметров для транзакций в типичных приложениях баз данных.

Вы, вероятно, заметили, что в сообщении об ошибке конфликта блокировки фигурирует слово "deadlock", однако это слово выбрано не совсем удачно. В переводе с английского оно означает "мертвая блокировка", или "взаимоблокировка". В нашем случае, несмотря на грозное сообщение, никаких взаимоблокировок не возникает.

Что же такое взаимоблокировка на самом деле и когда она может возникнуть?

Взаимоблокировка(deadlock) - важно

Взаимоблокировка - классическая проблема при синхронизации доступа к ресурсу, при котором принципиально невозможна дальнейшая работа конкурирующих транзакций. Для иллюстрации рассмотрим две транзакции Т1 и Т2

и два ресурса - А и В; в контексте разговора о базах данных ресурсами могут быть, например, записи в некоторой таблице. Допустим, выполняется такая последовательность действий:

  1. Транзакция Т1 блокирует ресурс А, после чего благополучно работает с ним.

  2. Транзакция Т2 блокирует ресурс В, после чего также с ним работает.

  3. Транзакция Т1 желает поработать с ресурсом В, для чего она пытается установить на него блокировку. Так как в это время ресурс В уже занят транзакцией В, транзакция Т1 входит в состояние ожидания.

  4. Транзакция Т2 желает поработать с ресурсом А, пытается выполнить его блокирование и также переходит в состояние ожидания.

В результате мы имеем печальную ситуацию: транзакции не имеют никакого шанса продолжить свое выполнение из-за того, что намертво блокируют друг друга. Любой сервер баз данных должен быть способен выходить из этой ситуации по возможности достойно, и InterBase не исключение. Проблема решается выбором одной из транзакций в качестве жертвы и ее откате, при этом другая транзакция получает возможность выполниться до конца. Алгоритм распознавания ситуации взаимоблокировки в InterBase не запускается сразу при возникновении конфликта, что сделано из соображений производительности. Вместо этого выдерживается определенный интервал времени, задаваемый параметром DEADLOCK_TIMEOUT в конфигурационном файле InterBase ibconfig, только после этого и производится сканирование таблицы блокировок на предмет взаимного блокирования.

В реальной практике программирования баз данных взаимоблокировки возникают крайне редко, поэтому не стоит считать, что вам так повезло, увидев слово "deadlock" в сообщении об ошибке. Скорее всего это всего лишь конфликт обновления.

Теперь давайте рассмотрим параметры, которые влияют на уровни изоляции.