Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учебник ЭиЭ 2ч.doc
Скачиваний:
218
Добавлен:
14.05.2015
Размер:
3.39 Mб
Скачать

6.3 Автогенератор в виде контура с отрицательным дифференциальным сопротивлением (туннельный диод).

Второй идеей получения незатухающих колебаний является внесение в колебательный контур отрицательного дифференциального сопротивления. Свободные колебания в контуре описываются выражением . При добавлении в контур последовательного сопротивления Rд Rэкв=rк+Rд, где rк – собственное сопротивление контура (сопротивление индуктивности). Если Rд<0 и Rдrк , то Rэкв 0 и колебание в контуре затухать не будут.

Рис.6.8.

При параллельном дифференциальном сопротивлении и при Rд<0 и также Rэкв  0. В качестве дифференциального сопротивления применяют туннельные диоды, лавинно – пролётные диоды (ЛПД) и диоды Ганна (ДГ). Схемы генераторов на туннельных диодах приведены на рис.6.8. Изменением напряжения питания диод устанавливается на середину падающего участка характеристики (точка U0).

Генераторы на туннельных диодах используются в сверхвысокочастотной области. Анализ показывает, что генератор на усилителе с положительной обратной связью также можно трактовать как генератор в виде контура с отрицательным дифференциальным сопротивлением, которым является транзистор или лампа с положительной обратной связью. (Увеличение коллекторного тока в транзисторе сопровождается увеличением напряжения на базе и соответственно уменьшением коллекторного напряжения).

6.4 Стабилизация частоты в автогенераторах.

Наиболее важным требованием, предъявляемым к автогенераторам, является высокая стабильность частоты выходных колебаний. Это связано с тем, что во время работы автогенератора частота колебаний может изменяться под воздействием различных дестабилизирующих факторов: изменений температуры, влажности и напряжения питания, наличия внешних электромагнитных полей, механических воздействий, что проявляется в изменениях величин индуктивностей, емкостей и сопротивлений, входящих в состав колебательных контуров и частотно- избирательных RC-цепей.

Относительная нестабильность частоты определяется коэффициентом нестабильности f'/fp или f'/fk. При расчете коэффициентов нестабильности используют следующие формулы:

для LC-генераторов f'/fp=-0.5(L/L+C/C); для RC-генераторов f'/fk=(R/R+C/C).

Здесь параметры L, C, R — величины изменений индуктивностей, емкостей и сопротивлений от номинальных значений. В схемах автогенераторов гармонических (часто и импульсных) колебаний применяют два основных способа стабилизации частоты: параметрический и кварцевый.

Параметрический способ стабилизации частоты заключается в ослаблении влияния дестабилизирующих факторов и подборе высокочастотных и прецизионных элементов колебательных контуров автогенераторов. Для исключения влияния температуры на параметры усилительных элементов автогенераторы в отдельных случаях помещают в термостаты. Уменьшение влияния механических воздействий обеспечивает применение печатного монтажа и проводов индуктивностей, вжигаемых в керамику. Параметрическая стабилизация частоты позволяет снизить нестабильность до 10-5 (уход частоты на f' =10 Гц при частоте генерируемых колебаний f = 1 МГц).

Кварцевая стабилизация частоты основана на применении в электрических схемах вместо LC-контуров кварцевого резонатора, что позволяет снизить нестабильность частоты колебаний автогенератора до 10-7 (отклонение частоты на f'=0,1 Гц при частоте генерируемых колебаний f=1 МГц). Кварцевый резонатор (сокращенно кварц) представляет собой помещенную в кварцедержатель тонкую пластинку минерала кварца, грани которой определенным образом ориентированы по отношению к осям кристалла и металлизированы тонким слоем серебра. Известно, что при воздействии на кварцевую пластинку переменного электрического поля в ней возникают упругие механические колебания (обратный пьезоэффект), приводящие, в свою очередь, к появлению электрических зарядов на гранях пластинки. Кварц можно рассматривать как электромеханическую колебательную систему, по эквивалентной схеме совпадающую с обычным колебательным LC-контуром (рис.6.9.а).

Рис.6.9.

Добротность кварцевого резонатора достигает сотен тысяч, тогда как у колебательного контура она не превышает 300...400. Механическая прочность и слабая зависимость частотных свойств от температуры обусловливают достаточно высокую стабильность частоты кварцевых резонаторов. При расчетах кварцевый резонатор представляют эквивалентной схемой, в которой элементы LQ, CQ и RQ характеризуют, соответственно, индуктивность, емкость и омические потери собственно кварца. Емкость Сок отражает наличие кварцедержателя. Зависимость реактивного сопротивления кварцевого резонатора от частоты x(f) приведена на рис.6.9.б). Она имеет два резонанса: последовательный на частоте f1 и параллельный на частоте f2. Последовательный резонанс обеспечивают элементы LQ и СQ отражающие резонансную частоту кварца . Параллельный резонанс в устройствах с кварцевым резонатором практически не используется.