Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив2 / курсач docx180 / Kursach_VTIT_Oformlenie.docx
Скачиваний:
75
Добавлен:
07.08.2013
Размер:
312.2 Кб
Скачать

2. Принцип действия пироэлектрического датчика.

Применение сдвоенного пироэлектрического датчика предоставляет возможность не только детектировать появление объекта инфракрасного излучения, но также и определять направление его движения. Кроме этого, при воздействии на обе области одновременно, выходной сигнал пироэлектрического датчика не меняется, то есть снижается вероятность ложных срабатываний (появление солнца из-за туч, изменение температуры в помещении). В свою очередь, применение датчика с одной чувствительной зоной позволяет по изменению среднего уровня выходного сигнала косвенно определить уровень освещенности в помещении.

Датчик движения/присутствия, основанный на пироэлектрическом принципе, отслеживает уровень инфракрасного излучения в поле зрения датчика. Сигнал на выходе пироэлектрического датчика зависит от уровня ИК-излучения. При появлении человека или другого объекта с температурой большей, чем температура фона, на выходе пироэлектрического датчика повышается напряжение. Для того чтобы определить, движется ли объект, в датчике используется линза Френеля, фокусирующая ИК-излучение на область чувствительности. При перемещении объекта, инфракрасное излучение от него улавливается и фокусируется разными сегментами линзы, что формирует несколько последовательных импульсов на выходе пироэлектрического датчика

Датчик действует на расстояние до 20 футов и не реагирует на естественные изменения окружающей среды, связанные с течение времени. При этом, датчик реагирует на любое резкое изменение окружающей среды(например появление человека). Модель с

датчиком не следует размещать рядом с батареями, розетками и любыми другими предметами быстро меняющими свою температуру, т.к. это приведёт к ложному срабатыванию. Модули с PIR датчиком обычно имеют 3 контакта : Vcc, Выход и GND. Он может работать при напряжении питания от 5 до 12V и имеет свой собственный всторенный стабилизатор напряжения. При наличии движения на выходе датчика появляется высокий логический уровень. Также он имеет 3х контактный джампер для установки режима работы. Боковые контакты имеют метки H и L. Когда перемычка находится в положении H, при срабатывании датчика несколько раз подряд на его выходе остается высокий логический уровень. В положении L, на выходе при каждом срабатывании датчика появляется отдельный импульс. Передняя часть модуля имеет линзу Френеля для фокусировки ИК излучения на чувствительный элемент.

  1. Схема и конструкция.

Схема датчика движения довольно проста. Устройство работает от  4 AA батарей, которые дают 6V. На диоде, который используется как защита от неправильного подключения питания, напряжение падает до 5,4V. Возможно также использовать батареи 9V , но тогда нам необходим стабилизатор LM7805. Выход с модуля контролируется микроконтроллером PIC12F635 через порт GP5 (вывод 2). При движении на выходе датчика появляется напряжение около 3,3 V. Это напряжение распознаётся микроконтроллером как высокий логический уровень, но я предпочел использовать это напряжение для управления NPN транзистором BC547, коллектор которого подключил к микроконтроллеру.  Когда транзистор закрыт, на его коллекторе высокий логический уровень (+5V). При движении на выходе модуля появляется высокий логический уровень который насыщает транзистор и напряжение на его коллекторе падает до низкого логического уровня. Перемычки на датчике находится в позиции H, так что выходной сигнал датчика будет оставаться высоким до тех пор, пока движение не прекратится. Микроконтроллер PIC12F635 использует внутренний тактовый генератор, работающий на частоте 4,0 МГц.

Рис. 2 Схема электрическая принципиальная.

Светодиод VD1, подключенный к порту GP4 через  токоограничивающий резистор мигает 3 раза при подключении питания. Пьезоэлектрический зуммер EFM-290ED подключенный к порту GP2 сообщает о наличии движения. Пьезоэлектрический зуммер дает максимально громкий звук на своей резонансной частоте. Зуммер имеет резонансную частоту 3,4 ± 0,5 кГц.

Пироэлектрический датчик долго стабилизируется (типичное значение - около 5 с), поэтому он остается включенным все время, в то время как на транзистор может быть подано (с вывода микроконтроллера) непосредственно перед запуском АЦП микроконтроллера.

Соседние файлы в папке курсач docx180