Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
167
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Stiffness Matrix in the 2-D Space

In the local coordinate system, we have

EA

1 1 u'

f

'

 

 

 

i

=

i

L

 

 

1

 

'

'

1

uj

f j

Augmenting this equation, we write

1

0

1

 

0

0

0

EA

L 1

0

1

 

0

0

0

 

or,

k'u' = f '

0 ui'

fi '

 

0

 

'

 

 

 

vi

0

 

 

 

 

=

 

 

0 u

'j

f j'

 

 

 

'

 

0

 

0 v j

 

 

Using transformations given in (29) and (30), we obtain

k' Tu = Tf

Multiplying both sides by TT and noticing that TTT = I, we obtain

TT k'Tu = f

(31)

Thus, the element stiffness matrix k in the global coordinate system is

k = TT k'T

(32)

which is a 4×4 symmetric matrix.

© 1997-2002 Yijun Liu, University of Cincinnati

42

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Explicit form,

 

 

 

ui

 

vi

 

uj

vj

 

 

 

l2

 

lm

l2

lm

 

 

 

lm m

2

lm m

2

 

k =

EA

 

 

 

 

L

 

l

2

lm

l

2

lm

 

 

 

 

 

 

 

 

 

 

lm

m2

lm

m2

 

 

Calculation of the directional cosines l and m:

l = cosθ =

X j Xi

,

m = sinθ =

Yj Yi

 

L

 

L

 

(33)

(34)

The structure stiffness matrix is assembled by using the element stiffness matrices in the usual way as in the 1-D case.

Element Stress

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ui

 

 

 

 

 

'

 

 

 

 

1

 

1

l m

0 0

 

 

 

 

 

 

ui

 

 

 

vi

 

σ = Eε = EB

'

 

= E

 

 

 

 

 

 

0 0

 

 

 

 

L

 

 

 

 

 

u

j

 

 

 

 

 

L

 

l m

uj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v j

 

That is,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ui

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi

 

 

 

 

 

 

σ =

 

[l

m

 

l m]

 

 

 

 

 

 

(35)

 

 

 

 

 

 

 

 

L

 

 

 

 

 

u j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v j

 

 

 

 

 

 

© 1997-2002 Yijun Liu, University of Cincinnati

43

Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

Example 2.3

 

 

 

 

3

 

 

 

 

A simple plane truss is made

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45o

 

 

of two identical bars (with E, A, and

 

 

 

 

 

 

L), and loaded as shown in the

 

 

2

 

P2

 

figure. Find

 

 

 

 

 

 

 

 

 

 

 

 

1) displacement of node 2;

 

 

 

 

Y

 

P1

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2) stress in each bar.

 

 

 

1

 

 

Solution:

 

 

 

 

 

 

 

45o

 

X

 

This simple structure is used

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

here to demonstrate the assembly

 

 

 

 

 

 

 

 

and solution process using the bar element in 2-D space.

 

 

In local coordinate systems, we have

 

 

 

 

 

 

 

 

'

EA 1

1

'

 

 

 

 

 

 

 

 

 

k1 =

 

= k

2

 

 

 

 

 

 

 

 

 

 

L 1

1

 

 

 

 

 

 

 

 

 

 

These two matrices cannot be assembled together, because they are in different coordinate systems. We need to convert them to global coordinate system OXY.

Element 1:

θ = 45o , l = m = 22

Using formula (32) or (33), we obtain the stiffness matrix in the global system

© 1997-2002 Yijun Liu, University of Cincinnati

44

Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

 

 

 

 

 

u1

 

v1

u2

 

v2

 

 

 

 

 

 

 

 

1

 

1

1 1

 

 

k1 =

T '

=

EA

1

 

1

1 1

 

 

T1

k1T1

2L

 

1

1

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

1

1

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

Element 2:

 

 

 

 

 

 

 

 

 

 

 

 

 

θ = 135o , l = −

2

, m =

2

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

We have,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u2

 

v2

u3

 

v3

 

 

 

 

 

 

 

 

1

 

1

1

 

1

 

k2 =

T '

=

EA 1

 

1

1

 

1

 

T2

k2T2

 

 

 

1

1

 

 

 

 

 

 

 

2L 1

 

 

1

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

 

1

 

 

1

 

Assemble the structure FE equation,

 

 

 

 

 

 

 

u1

v1

 

u2

v2

 

u3

v3

 

 

 

 

 

1

1 1 1

 

0

0 u1

 

F1X

 

1

1 1 1

 

0

0 v

 

F

 

 

 

 

 

 

 

 

 

 

1

 

1Y

EA 1

1 2

0

 

1 1 u2

 

F2 X

 

 

1 0

2

 

 

 

 

 

=

 

2L 1

 

1 1 v2

F2Y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0 1 1

 

 

 

 

 

F3 X

 

 

1 1 u3

 

0

0

 

1 1

 

1 1 v3

F3Y

© 1997-2002 Yijun Liu, University of Cincinnati

45

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Load and boundary conditions (BC):

u1 = v1 = u3 = v3 = 0,

F2 X = P1 , F2Y = P2

Condensed FE equation,

 

 

EA 2

0 u2

 

P1

 

2L 0

2 v

2

 

= P

 

 

 

 

2

 

Solving this, we obtain the displacement of node 2,

u2

=

L

P1

 

v2

 

EA P2

Using formula (35), we calculate the stresses in the two bars,

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

(P

+ P )

σ

 

=

E 2

[

1

1 1 1

L

 

=

2

 

1

 

L 2

 

 

]

EA

P

 

 

2 A 1

2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

= E 2

 

 

 

 

 

 

1

 

 

2 (P P )

σ

2

[

1

1

1 1

L P2

 

=

 

 

L 2

 

 

]

 

 

0

 

 

2 A

1

2

 

 

 

 

 

 

 

EA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Check the results:

Look for the equilibrium conditions, symmetry, antisymmetry, etc.

© 1997-2002 Yijun Liu, University of Cincinnati

46

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]