Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FEM_Lecture_Notes.pdf
Скачиваний:
167
Добавлен:
16.05.2015
Размер:
2.58 Mб
Скачать

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Applying the result in (43) and carrying out the integration, we arrive at the same stiffness matrix as given in (38).

Combining the axial stiffness (bar element), we obtain the stiffness matrix of a general 2-D beam element,

 

ui

 

vi

θi

 

uj

 

vj

θj

 

EA

 

0

 

0

EA

 

 

0

 

0

 

 

L

 

 

L

 

 

 

 

 

0

12EI

6EI

 

0

12EI

6EI

 

 

 

L3

 

L2

 

 

L3

 

L2

 

 

 

 

 

 

 

 

 

 

 

 

0

 

6EI

4EI

 

0

6EI

2EI

 

k =

EA

 

L2

 

L

EA

 

 

L2

 

L

 

 

 

0

 

0

 

 

0

 

0

 

L

 

 

 

L

 

 

 

 

 

 

12EI

 

6EI

 

12EI

 

6EI

0

 

0

 

L3

L2

 

 

 

L3

L2

 

 

 

 

 

 

 

 

 

 

 

 

0

 

6EI

2EI

 

0

6EI

4EI

 

 

 

2

 

L

 

2

 

L

 

 

 

 

L

 

 

 

 

 

L

 

 

3-D Beam Element

The element stiffness matrix is formed in the local (2-D) coordinate system first and then transformed into the global (3- D) coordinate system to be assembled.

(Fig. 2.3-2. On Page 24 of Cook’s book)

© 1997-2002 Yijun Liu, University of Cincinnati

57

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

Example 2.5

Y

 

P

 

 

 

 

 

 

 

1

M

2

 

 

 

 

1

E,I

2

3

X

 

L

 

L

 

Given: The beam shown above is clamped at the two ends and acted upon by the force P and moment M in the midspan.

Find: The deflection and rotation at the center node and the reaction forces and moments at the two ends.

Solution: Element stiffness matrices are,

 

 

 

 

 

v1

θ1

v2

θ2

 

 

 

 

 

12

6L

12

6L

k1

=

EI

 

6L 4L2

6L

2L2

L3

 

 

6L

 

 

 

 

 

 

12

12 6L

 

 

 

 

 

6L

2

 

2

 

 

 

 

 

 

2L

6L 4L

 

 

 

 

 

 

v2

θ2

v3

θ3

 

 

 

 

 

12

6L

12

6L

k

 

=

EI

 

6L 4L2

6L

2L2

 

L3

 

 

6L

 

 

 

 

2

 

12

12 6L

 

 

 

 

 

6L

2

 

2

 

 

 

 

 

 

2L

6L 4L

 

© 1997-2002 Yijun Liu, University of Cincinnati

58

Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

Global FE equation is,

 

 

v1

θ1

v2

θ2

v3

θ3

 

 

 

 

 

12

6L 12 6L

0

0

v1

 

F1Y

 

 

 

6L

2

 

2

0

0

 

 

 

 

 

 

4L

6L 2L

θ1

 

M1

 

EI 12 6L 24

0

12 6L v2

 

F2Y

 

3

 

6L

2

0

2

 

2

 

 

=

 

L

 

2L

8L

6L 2L

θ2

 

M2

 

 

 

0

0

12 6L

 

 

 

 

 

 

 

 

12 6L v3

 

F3Y

 

 

 

0

0

6L 2L2

6L 4L2

θ3

M3

Loads and constraints (BC’s) are,

 

 

F2Y = −P,

 

M2 = M ,

 

v1 = v3 =θ1 =θ3 = 0

 

 

Reduced FE equation,

 

 

 

 

 

EI

24

0 v2

 

P

L3

0 8L2

θ

 

=

M

 

 

 

 

2

 

 

 

 

Solving this we obtain,

v2

 

=

L

 

 

 

24EI

θ2

 

 

PL23M

From global FE equation, we obtain the reaction forces and moments,

© 1997-2002 Yijun Liu, University of Cincinnati

59

Lecture Notes: Introduction to Finite Element Method

Chapter 2. Bar and Beam Elements

F1Y

 

 

 

 

 

 

M1

 

=

 

F

 

 

 

 

3Y

 

 

 

 

 

M3

 

 

12 EI 6L L3 126L

6L

2L2 v2 = 6L θ2

2L2

 

2P +3M / L

1

 

PL + M

 

 

 

4

 

 

 

2P 3M / L

 

 

 

 

 

 

PL + M

Stresses in the beam at the two ends can be calculated using the formula,

σ = σx = − MyI

Note that the FE solution is exact according to the simple beam theory, since no distributed load is present between the nodes. Recall that,

EI

d 2v

= M (x)

dx2

 

 

and

 

 

dMdx =V (V - shear force in the beam)

dVdx = q (q - distributed load on the beam)

Thus,

EI

d 4v

= q(x)

dx4

 

 

If q(x)=0, then exact solution for the deflection v is a cubic function of x, which is what described by our shape functions.

© 1997-2002 Yijun Liu, University of Cincinnati

60

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]