Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций.Электромагнетизм.doc
Скачиваний:
102
Добавлен:
17.05.2015
Размер:
9.42 Mб
Скачать

4.5. Электродвигатель

Если в генераторе на рамку AKCD подать ток I через щетки P, Q от внешнего источника, то рамка начнет вращаться в результате действия на нее сил Ампера (рис. 4.10). Это и есть электродвигатель, так как вращательное движение рамки можно механическим образом передать любому устройству, например, колесам электровоза.

Рис.4.10.

В электродвигателях рамка состоит из множества соединенных последовательно витков, намотанных на каркас – ротор, а магнитное поле создается целым набором пар электромагнитов, включаемых по очереди.

На рисунке (4.11) изображен момент, когда магнитное поле создает 1-я пара электромагнитов, затем будет очередь 2-й пары, затем 3-й, 4-й и т.д. В результате направление магнитного поля будет меняться, вращаясь по часовой стрелке, а рамка будет постоянно стремиться развернуться перпендикулярно вектору магнитного поля.

Рис.4.11.

Рамка вращается непрерывно, если токосъемное кольцо разрезано (рис. 4.12). Щетки P, Q подходят к разрезу кольца тогда, когда рамка перпендикулярна вектору . В результате перехода щетокP, Q через разрез изменяется направление тока в рамке, а значит, и направление сил Ампера, что и заставляет ее вращаться.

Реальные электродвигатели конструктивно намного сложнее описанных выше схем, но суть их работы та же самая – заставить вращаться проводник с током в магнитном поле. Важно отметить, что принципиально электродвигатель не отличается от электрогенератора. Различие их в том, что в электродвигателе мы получаем вращение рамки в магнитном поле, если через рамку пропускать электрический ток; в электрогенераторе, наоборот, получаем электрический ток, вращая рамку в магнитном поле. Это свойство используется, например, в электровозах: на подъемах и при ускорении движения двигатель электровоза потребляет энергию из электросети, на спусках и при торможении двигатель превращается в генератор, вырабатывающий электроэнергию, и возвращает ее обратно в электросеть

Рис.4.12.

4.6. Трансформатор.

Трансформаторы предназначены для преобразования одного переменного напряжения в другое. Например, с помощью трансформатора можно преобразовать 500 кВ из высоковольтной линии в 220 В (напряжение, используемое в промышленности и в быту).

Трансформатор представляет собой стальной сердечник кольцеобразной или прямоугольной формы, на который намотано не менее двух обмоток. На рис.4.13 показана схема трансформатора с двумя обмотками. На первую (первичную) обмотку трансформатора к зажимам 1, 2 приложено переменное (синусоидальное) напряжение . Со второй (вторичной) обмотки трансформатора с зажимов 3, 4 снимается переменное напряжение. Сердечник трансформатора играет роль концентратора магнитно поля: практически все силовые линии магнитного поля, и поток Ф первичной обмотки, концентрируются в стальном сердечнике, пронизывая каждый виток первичной, и вторичной обмоток.

Рис.4.13.

Наряду с приложенным переменным напряжением в первичной обмотке образуется ЭДС самоиндукции

, (4.9)

где n1 – число витков первичной обмотки.

Согласно закону Кирхгофа, сумма всех приложенных к первичной обмотке напряжений и ЭДС равно падению напряжения на сопротивлении этой обмотки:

,

где I1, R1 – ток и омическое сопротивление в первичной обмотке. С целью минимальной потери энергии трансформаторы изготавливают с малым сопротивлением обмоток. Поэтому будем считать, что I1R1≈0. Тогда

. (4.10)

В витках вторичной обмотки также образуется ЭДС индукции:

(4.11)

где n2 – число витков вторичной обмотки.

Если к зажимам 3, 4 подключить какую-либо нагрузку R (причем , гдеR2 – сопротивление витков вторичной обмотки), то в цепи вторичной обмотки пойдет ток I2(t). Согласно закону Кирхгофа (как и для первичной обмотки), Так какR2<<R, то

(4.12)

Отметим, что знак «минус» в формуле (4.12) особого значения не имеет, так как реально направление индуцированного напряжения и тока во вторичной обмотке зависит от того, как намотана эта обмотка. Тогда

Отношение переменных напряженности

(4.13)

Итак, во сколько раз число витков первой обмотки больше или меньше числа витков второй, во столько же раз и напряжение в первой обмотке больше или меньше напряжения во второй.

Важно отметить, что этот вывод справедлив тогда, когда сопротивление нагрузки R намного больше сопротивления вторичной обмотки R2, а также при условии сравнительно малых токов в первичной обмотке, т.е. при I1R1<<U1.

Трансформатор – это устройство для бесконтактной перекачки энергии из первичной обмотки во вторичную. Обычно режим работы трансформатора выбирают таким, чтобы потери энергии в нем самом были невелики (чтобы сам он не нагревался). Это означает, что и

.

Итак, чем больше витков в обмотке, тем меньше ток в ней идет. Это означает, что в высоковольтных обмотках с большим числом витков идут малые токи, а в низковольтных, наоборот, - большие. Например, в сварочном трансформаторе с числом витков n1=1000, n2=100, подключенном к сетевому напряжению 220 В, во вторичной обмотке получают 22 В. При этом если ток в первичной обмотке I1=5А, то во вторичной обмотке идет сварочный ток I2=50A