Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Becker O.M., MacKerell A.D., Roux B., Watanabe M. (eds.) Computational biochemistry and biophysic.pdf
Скачиваний:
68
Добавлен:
15.08.2013
Размер:
5.59 Mб
Скачать

196

Simonson

A final important area is the calculation of free energies with quantum mechanical models [72] or hybrid quantum mechanics/molecular mechanics models (QM/MM) [9]. Such models are being used to simulate enzymatic reactions and calculate activation free energies, providing unique insights into the catalytic efficiency of enzymes. They are reviewed elsewhere in this volume (see Chapter 11).

REFERENCES

1.C Wong, J McCammon. J Am Chem Soc 108:3830–3832, 1986.

2.A Warshel, F Sussman, G King. Biochemistry 25:8368–8372, 1986.

3.P Bash, U Singh, F Brown, R Langridge, P Kollman. Science 235:574–576, 1987.

4.C Brooks, M Karplus, M Pettitt. Adv Chem Phys 71:1–259, 1987.

5.J McCammon, S Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge, UK: Cambridge Univ Press, 1987.

6.D Beveridge, F DiCapua. Annu Rev Biophys Biophys Chem 18:431–492, 1989.

7.W van Gunsteren, P Weiner, eds. Computation of Free Energy for Biomolecular Systems. Leiden: Escom Science, 1989.

8.W van Gunsteren, T Beutler, F Fraternali, P King, A Mark, P Smith. In: W van Gunsteren, P Weiner, A Wilkinson, eds. Computer Simulation of Biomolecular Systems. Leiden: ESCOM Science, 1993, pp 315–348.

9.A Warshel. Computer Modelling of Chemical Reactions in Enzymes and Solutions. New York: Wiley, 1991.

10.P Kollman. Chem Rev 93:2395, 1993.

11.ML Lamb, W Jorgensen. Curr Opin Chem Biol 1:449–457, 1997.

12.R Levy, E Gallicchio. Annu Rev Phys Chem 49:531, 1998.

13.FB Sheinerman, CL Brooks, Proc Natl Acad Sci USA 95:1562–1567, 1998.

14.B Roux, T Simonson, eds. Implicit Solvent Models for Biomolecular Simulations. Special Issue of Biophys Chem Amsterdam: Elsevier, 1999.

15.T Darden. This volume, Chapter 5.

16.B Tembe, J McCammon. Comput Chem 8:281–283, 1984.

17.W Jorgensen, K Buckner, S Boudon, J Tirado-Rives. J Chem Phys 89:3742–3746, 1988.

18.RH Fowler, EA Guggenheim. Statistical Thermodynamics. Cambridge, UK: Cambridge Univ Press, 1939.

19.F Zwanzig. J Chem Phys 22:1420, 1954.

20.G Hummer, A Szabo. J Chem Phys 105: 2004–2010, 1996.

21.H Liu, A Mark, W van Gunsteren. J Phys Chem 100:9485–9494, 1996.

22.T Simonson, D Perahia. J Am Chem Soc 117:7987–8000, 1995.

23.R von Mises. Mathematical Theory of Probability and Statistics. New York: Academic Press, 1964.

24.M Mezei. Mol Simul 10:225–239, 1993.

25.T Simonson, G Archontis, M Karplus. J Phys Chem B 101:8349–8362, 1997.

26.G Archontis, T Simonson, D Moras, M Karplus. J Mol Biol 275:823–846, 1998.

27.J Gao, K Kuczera, B Tidor, M Karplus. Science 244:1069–1072, 1989.

28.S Boresch, M Karplus. J Phys Chem A 103:103–118, 1999.

29.B Roux, M Nina, R Pomes, J Smith. Biophys J 71:670–681, 1996.

30.J Hermans, L Wang. J Am Chem Soc 119:2702–2714, 1997.

31.T Simonson. Mol Phys 80:441–447, 1993.

32.T Simonson, AT Bru¨nger, Biochemistry 31:8661–8674, 1992.

33.S Boresch, M Karplus. J Phys Chem A 103:119–136, 1999.

34.S Boresch, G Archontis, M Karplus. Proteins 20:25–33, 1994.

Free Energy Calculations

197

35.M Gilson, J Given, B Bush, J McCammon. Biophys J 72:1047–1069, 1997.

36.J Hermans, S Shankar. Isr J Chem 27:225–227, 1986.

37.J Valleau, G Torrie. In: B Berne, ed. Modern Theoretical Chemistry, Vol. 5. New York: Plenum Press, 1977, pp 137–194.

38.J Hermans, RH Yun, AG Anderson. J Comput Chem 13:429–442, 1992.

39.A Hodel, L Rice, T Simonson, RO Fox, AT Bru¨nger. Protein Sci 4:634–654, 1995.

40.C Haydock, J Sharp, F Prendergast. Biophys J 57:1269–1279, 1990.

41.M Mezei. Mol Simul 3:301–313, 1989.

42.C Bartels, M Karplus. J Comput Chem 18:1450, 1997.

43.C Bartels, M Karplus. J Phys Chem B 102:865–880, 1998.

44.N Nakajima, H Nakamura, A Kidera. J Phys Chem B 101:817–824, 1997.

45.M Hao, H Scheraga. J Chem Phys 102:1334–1348, 1995.

46.S Kumar, D Bouzida, R Swendsen, P Kollman, J Rosenberg. J Comput Chem 13:1011–1021, 1992.

47.X Kong, CL Brooks. J Chem Phys 105:2414–2423, 1996.

48.DJ Tobias, CL Brooks. Chem Phys Lett 142:472–476, 1987.

49.R Elber. J Chem Phys 93:4312–4320, 1990.

50.E Carter, G Ciccotti, J Hynes, R Kapral. Chem Phys Lett 156:472–477, 1989.

51.E Paci, G Ciccotti, M Ferrario, R Kapral. Chem Phys Lett 176:581–587, 1991.

52.WD Otter, W Briels. J Chem Phys 109:4139–4146, 1998.

53.T Straatsma, M Zacharias, J McCammon. Chem Phys Lett 196:297–301, 1992.

54.RH Wood. J Chem Phys 103:6177–6187, 1995.

55.H Schreiber, O Steinhauser. J Mol Biol 228:909–923, 1992.

56.D Beglov, B Roux. J Chem Phys 100:9050–9063, 1994.

57.T Darden, D Pearlman, L Pedersen. J Chem Phys 109:10921–10935, 1998.

58.T Simonson. J Phys Chem B 104:6509–6513, 2000.

59.G Hummer, L Pratt, A Garcia. J Phys Chem 100:1206–1215, 1996.

60.S Boresch, O Steinhauser. Ber Bunsenges Phys Chem 101:1019–1029, 1997.

61.G Hummer, L Pratt, A Garcia. J Phys Chem B 101:9275, 1997.

62.J Straub. In: R Elber, ed. New Developments in Theoretical Studies of Proteins. Singapore: World Scientific, 1999.

63.DJ Tobias, CL Brooks, SH Fleischman. Chem Phys Lett 156:256–260, 1989.

64.R Wade, J McCammon. J Mol Biol 225:679–712, 1992.

65.J Zeng, M Fridman, H Maruta, HR Treutlein, T Simonson. Prot Sci 8:50–64, 1999.

66.M Head, J Given, M Gilson. J Phys Chem A 101:1609–1618, 1997.

67.A Mark, W van Gunsteren, H Berendsen. J Chem Phys 94:3808–3816, 1991.

68.B Tidor. J Phys Chem 97:1069–1073, 1993.

69.R Pomes, E Eisenmesser, C Post, B Roux, J Chem Phys 111:3387–3395, 1999.

˚

70. J Aqvist, C Median, J Samuelsson. Protein Eng 7:385–391, 1994.

71. E Duffy, W Jorgensen. J Am Chem Soc 122:2878–2888, 2000.

72. R Stanton, S Dixon, K Merz Jr. In: A Warshel, G Naray-Szabo, eds. Computational Approaches to Biochemical Reactivity. New York: Kluwer, 1996.

73. T Straatsma, H Berendsen, J Postma. J Chem Phys 85:6720, 1986.

10

Reaction Rates and

Transition Pathways

John E. Straub

Boston University, Boston, Massachusetts

I.INTRODUCTION

For 25 years, molecular dynamics simulations of proteins have provided detailed insights into the role of dynamics in biological activity and function [1–3]. The earliest simulations of proteins probed fast vibrational dynamics on a picosecond time scale. Fifteen years later, it proved possible to simulate protein dynamics on a nanosecond time scale. At present it is possible to simulate the dynamics of a solvated protein on the microsecond time scale [4]. These gains have been made through a combination of improved computer processing (Moore’s law) and clever computational algorithms [5].

In spite of these millionfold advances in the length of computer simulation, many dynamic processes remain outside the reach of direct dynamic simulation. Typically these processes involve the crossing of one or more energy barriers that stand between the reactant and product states. To overcome high energy barriers the system must concentrate an amount of energy far greater than the thermal energy in one or a few degrees of freedom. Such fluctuations are highly improbable and are known as ‘‘rare events’’—they occur only infrequently. Processes of this kind include ligand rebinding in heme proteins, proton transfer in enzymatic catalysis, and the configurational reorganization of a folding protein.

A. Defining Reactant and Product ‘‘States’’

The basic chemical description of rare events can be written in terms of a set of phenomenological equations of motion for the time dependence of the populations of the reactant and product species [6–9]. Suppose that we are interested in the dynamics of a conformational rearrangement in a small peptide. The concentration of reactant states at time t is NR(t), and the concentration of product states is NP(t). We assume that we can define the reactants and products as distinct ‘‘macrostates’’ that are separated by a ‘‘transition state’’ dividing surface. The transition state surface is typically the location of a significant energy barrier (see Fig. 1).

For example, when the energy barrier is high compared to the thermal energy, we can assume that when a reactant state is prepared there will be many oscillations in the reactant well before the system concentrates enough energy in the ‘‘reaction coordinate’’

199