Скачиваний:
26
Добавлен:
15.08.2013
Размер:
956.59 Кб
Скачать

24. Advances in the metathesis of olefins

1597

This catalyst also effects the ring-closing metathesis of many acyclic dienynes to form fused bicyclic rings, containing 5-, 6- and 7-membered rings, e.g. equation 68. The reaction may be assumed to take place in two stages as indicated by the dashed arrows:

(i) intramolecular metathesis of the alkyne with the sterically less hindered double bond, followed by (ii) metathesis with the remaining exocyclic double bond742.

Many natural products contain fused bicyclic structures and the dienyne metathesis reaction may well open up new and more efficient routes for their synthesis.

XII. METATHESIS REACTIONS OF ALKYNES INVOLVING TOTAL CLEAVAGE

OF THE CC BOND

A. Acyclic Alkynes

The metathesis of internal acetylenes was first observed in 1968 using WO3/SiO2 at 350 °C as catalyst743. The most active and most selective MoO3/SiO2 catalysts are prepared by contacting SiO2 with ( -allyl)4Mo and then oxidizing the surface. Proof of triple-bond cleavage in such reactions was obtained by isotopic labelling experiments, e.g. equation 69744 746.

2C3H7C C14CH3

C3H7C CC3H7

C

14CH3C C14CH3

69

 

 

 

 

The reaction of internal acetylenes R1C CR2 leads to a near 1:2:1 equilibrium mixture of R1C CR1, R1C CR2 and R2C CR2. In the cross-metathesis of PhC CEt with PrC CMe the equilibrium mixture contains the expected eight compounds PhC CPh, EtC CEt, PrC CPr, MeC CMe, PhC CPr, EtC CMe, PhC CMe and PrC CEt, as well as the reactants. However, the initial rate of production of PrC CPr and EtC CEt is more than three times that of PrC CEt746.

Reactions of this type proceed via metal carbyne complexes (equation 4). The most direct evidence is that such complexes (Mt D Mo, W, Re) can act as initiators for the metathesis of R1C CR23,6 , and of RC CH in the initial stages747, and for the ROMP of cycloalkynes7,8. Metallacyclobutadienes have been prepared748,749 and some can act as initiators of acetylene metathesis750,751; and their ready formation as intermediates can be expected on theoretical grounds752 754.

The ability of metal carbyne complexes of the type Mt( CCMe3)(OR)3 to metathesize internal acetylenes by a chain mechanism depends on a delicate balance between electronic and steric factors, otherwise reaction either stops after the first step, or gives other products755 or does not proceed at all. The reaction of W( CCMe3)(OCMe3)3 with PrC CEt produces an equilibrium mixture of PrC CEt, PrC CPr, and EtC CEt in less than 1 min at 25 °C and the 13C NMR spectrum of the products indicates the presence of the three W( CR)(OCMe3)3 species, where R D Et, Pr and CMe33. Reaction 70 is an apparent single-step reaction but there is in fact an on-going degenerate exchange of the reactant with the product metal carbyne complex.

Me3 CC

 

 

W(OCMe3 )3

 

Me3 CC

 

 

W(OCMe3 )3

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

+

(70)

 

 

 

 

 

 

 

 

 

 

 

 

EtC

 

CPh

 

 

 

 

 

 

 

 

 

 

 

EtC

 

CPh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A potential side reaction is the formation of a metallatetrahedrane complex by tautomerization of the metallacyclobutadiene intermediate or by its direct formation from the reactants756.

In reaction 71 the products are (i) EtC CCMe3, resulting from the metathesis reaction, and (ii) a metallacyclobutadiene complex, produced by addition of a second molecule of

1598

K. J. Ivin

the acetylene to the initially formed carbyne complex. This metallacyclobutadiene complex is able to initiate the metathesis of EtC CPr and PrC CBu, and must therefore be in equilibrium with its dissociation products. It exchanges carbyne moieties with C2D5C CC2D5 at a rate that is independent of the substrate concentration; the dissociation of the metallacyclobutadiene complex into the metal carbyne complex is therefore rate-controlling750. However, when the OR ligands of the complex are OCH(CF3)2 instead of OC6H3-i-Pr2- 2,6 the rate of exchange with C2D5C CC2D5 is first order in substrate, indicating an associative mechanism757.

Me3 CC

 

 

W(OC6 H3 -i-Pr2 -2,6)3

 

Me3 CC

 

 

[W]

CEt

(71)

 

 

 

 

 

 

 

 

+

 

 

+

 

 

 

 

 

 

 

 

 

 

 

2 EtC

 

 

CEt

 

EtC

 

 

EtC

CEt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The corresponding molybdenum complexes exhibit metathesis activity when OR is an electron-withdrawing ligand such as OCMe2CF3, OCMe(CF3)2 or OC(CF3)7583 , but not when OR is OCMe3, OCHMe2 or OCH2CMe3. In the last case EtC CPr is polymerized rather than metathesized, showing that the metal carbyne is then readily converted to a metal carbene complex which initiates polymerization750. The role of the alkoxide or phenoxide ligands in these reactions has been reviewed by Schrock35.

The rhenium carbyne complex Re( CCMe3)(DNAr)(OR)2 is active for metathesis of internal acetylenes when OR is OCMe(CF3)2, but not when OR is OCMe2CF3, OCMe3 or OC6H3-i-Pr2-2,65,6. The complex W( CMe)(Cl)(PMe3)4 undergoes stoichiometric metathesis with PhC CPh but the product PhC CMe remains coordinated to the metal centre759.

The remarkable cocatalytic effect of certain phenols for the metathesis of internal acetylenes by molybdenum compounds such as Mo(CO)6 was discovered in 1974760. Some systems are even active at room temperature. Thus MoO2(acac)2/Et3Al/PhOH and MoO(OPh)4/Et3Al/PhOH cause metathesis of BuC CPr at 30 °C4. When the substrate itself bears a phenolic group, as in 4-HO C6H4C CMe, it acts as its own cocatalyst with Mo(CO)6 and gives a 78% yield of metathesis product on heating in toluene. If the 4-HO group is replaced by 4-MeO metathesis will only occur if a phenol is added. If 4-HO is replaced by 2-HO then metathesis gives way to the formation of cyclic trimer761.

The mode of action of the phenolic cocatalysts is not fully understood. One suggestion, based on the identification of the initial products, is that the reaction is propagated by a metal carbene complex, the necessary rearrangement of the intermediate metallacyclobutene complex being facilitated by transfer of a proton from the phenol, a different proton being subsequently reclaimed by the phenoxide ion762. It is also possible that the reaction involves the replacement of carbonyl ligands by phenoxo ligands; the fact that metal carbyne complexes that initiate acetylene metathesis usually bear three RO ligands (R D aryl or alkyl) points in this direction; see above.

Catalysts such as Mo(CO)6/MeCN also bring about the metathesis of hept-2-yne, but not of hept-1-yne; instead oligomers are formed from the latter763.

B. ROMP of Cycloalkynes

The ROMP of cyclooctyne is initiated by Mo( CPr)(OCMe3)37. The methyl protons in the propyl group of the initiator give a triplet at υ 0.74. On addition of 15 equiv of cyclooctyne this signal is replaced by a triplet at υ 0.92 assigned to the same protons in the propagating species, to which it has been completely converted. Another triplet (υ 3.02), due to the methylene protons nearest to the metal centre in the living propagating species, replaces the triplet (υ 2.95) due to [Mo] CCH2CH2CH3 in the initiator. The 13C NMR spectrum of the polymer exhibits a sharp resonance at υ 80.4, characteristic of C C in the chain and quite distinct from that for C C in cyclooctyne (υ 94.5).

24. Advances in the metathesis of olefins

1599

Another initiator for this polymerization is (Me3CO)3W W(OCMe3)3, but analysis of the products by MS shows that they are macrocyclic oligomers. Their ring-size distribution, as determined by GPC, conforms to the Jacobson Stockmayer relationship. It is evident that with the tungsten catalyst there is strong competition between the backbiting and propagation reactions. The molybdenum carbyne catalyst is less reactive and gives mainly linear polymer if the reaction is quenched with an excess of phenylacetylene within 2 min of addition of the monomer; but if the quenching is delayed for 15 min only cyclic species are subsequently isolated. When the backbiting reaction occurs at the end of the chain the initiator is regenerated. A small proportion of initiator is therefore present when the system reaches equilibrium. For example, when the initial ratio of cyclooctyne to Mo( CPr)(OCMe3)3 is 10, the equilibrium mixture contains 5% of the original initiator; this proportion becomes smaller if the original ratio of monomer to initiator is increased. The rest of the initiator ends up as very short chain living polymer. The equilibrium concentration of cyclooctyne is too small to measure, but a significant proportion of cyclic dimer (cyclohexadeca-1,9-diyne) is formed7.

The ROMP of tetrasilacycloocta-3,7-diynes can also be initiated by W C or W W complexes of the above type (equation 72). When R D R0 D Me, addition of 3 equiv of monomer to 1 equiv of [ W(OCMe2CF3)3]2 results in complete consumption of monomer over 3 h at 25 ° C to yield a partially soluble polymer. Relatively little of the catalyst is used so that propagation must be much faster than initiation. When R D R0 D Et there is no reaction with this catalyst. Hence when R D Me and R0 D Et one may predict that there will be a strong preference for the reaction to proceed via the metallacyclobutadiene complex in which the bulkier SiEt2 substituent is always placed away from the sterically congested metal. This leads one to expect that the polymer will have an all-HT structure and therefore only two 29Si NMR signals, as indeed is observed. This is in contrast to the anionically produced ring-opened polymer which has additional signals from HH and TT structures. The monomer with R D R0 D Et can be polymerized using the more active catalyst W( CMe)(OCMe2CF3)38.

R2 Si

SiR2

 

 

 

 

 

R

R

R

R

 

 

 

 

 

 

 

 

 

 

 

n

SiR2

 

 

 

W(OCMe2

CF3 )3

2

C Si

Si C C

Si

Si C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 Si

 

 

 

 

 

 

 

R

R

R

R

n

 

 

 

 

 

 

 

 

 

(72)

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Acyclic Diynes

The acyclic diyne metathesis polymerization of dodeca-2,10-diyne is catalysed by W( CEt)(OCMe3)3; see equation 73. But-2-yne is eliminated and the product is an offwhite insoluble powder with the same Tm as the polymer prepared from cyclooctyne (Section XII.B)7.

 

 

 

 

 

[W]

 

CEt

 

 

 

 

 

 

 

+ (n-1) MeC

 

CMe

 

 

 

 

 

 

 

 

 

 

 

 

n MeC

 

C(CH2 )6 C

 

CMe

 

 

 

MeC

 

 

C(CH2 )6 C

 

 

CMe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(73)

XIII. REFERENCES

1.N. Calderon, Chem. Eng. News, 45, 51 (1967).

2.J.-L. Herisson´ and Y. Chauvin, Makromol. Chem., 141, 161 (1971).

3.J. H. Wengrovius, J. Sancho and R. R. Schrock, J. Am. Chem. Soc., 103, 3932 (1981).

4.A. Bencheick, M. Petit, A. Mortreux and F. Petit, J. Mol. Catal., 15, 93 (1982).

1600

K. J. Ivin

5.R. R. Schrock, I. A. Weinstock, A. D. Horton, A. H. Liu and M. H. Schofield, J. Am. Chem. Soc., 110, 2686 (1988).

6.I. A. Weinstock, R. R. Schrock and W. M. Davis, J. Am. Chem. Soc., 113, 135 (1991).

7.S. A. Krouse and R. R. Schrock, Macromolecules, 22, 2569 (1989).

8.X.-P. Zhang, and G. C. Bazan, Macromolecules, 27, 4627 (1994).

9.L. F. Cannizzo and R. H. Grubbs, Macromolecules, 20, 1488 (1987).

10. G. C. Bazan, E. Khosravi, R. R. Schrock, W. J. Feast, V. C. Gibson, M. B. O’Regan,

J. K. Thomas and W. M. Davis, J. Am. Chem. Soc., 112, 8378 (1990).

11.O. Fujimura, G. C. Fu, P. W. K. Rothemund and R. H. Grubbs, J. Am. Chem. Soc., 117, 2355 (1995).

12.T. Kauffmann, R. Abeln, S. Welke and D. Wingbermuhle,¨ Angew. Chem., Int. Ed. Engl., 25, 909 (1986).

13.G. C. Fu and R. H. Grubbs, J. Am. Chem. Soc., 115, 3800 (1993).

14.I. Meisel, G. Hertel and K. Weiss, J. Mol. Catal., 36, 159 (1986).

15.K. Weiss and K. Hoffmann, NATO ASI Ser., C269, 351 (1989).

16.K. B. Dillon, V. C. Gibson and L. J. Sequeira, J. Chem. Soc., Chem. Commun., 2429 (1995).

17.W. R. Roper, J. M. Waters and A. H. Wright, J. Organomet. Chem., 275, C13 (1984).

18.G. Proulx and R. G. Bergman, J. Am. Chem. Soc., 115, 9802 (1993).

19.K. E. Meyer, P. J. Walsh and R. G. Bergman, J. Am. Chem. Soc., 116, 2669 (1994).

20.J. H. Freudenberger and R. R. Schrock, Organometallics, 5, 398 (1986).

21.K. Weiss, U. Schubert and R. R. Schrock, Organometallics, 5, 397 (1986).

22.K. Weiss and K. Hoffmann, Z. Naturforsch., B, Chem. Sci., 42, 769 (1987).

23.M. H. Chisholm, B. W. Eichhorn, K. Folting and J. C. Huffman, Organometallics, 8, 49 (1989).

24.A. F. Hill, J. Mol. Catal., 65, 85 (1991).

25.R. Goller, U. Schubert and K. Weiss, J. Organomet. Chem., 459, 229 (1993).

26.K. J. Ivin and J. C. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, London, 1997.

27.K. J. Ivin, Olefin Metathesis, Academic Press, London, 1983.

28.Y. Imamoglu, B. Zumreoglu¨-Karan and A. J. Amass, NATO ASI Ser., C326, 1 (1990).

29.H. S. Eleuterio, US Patent 3,074,918 (1957); Chem. Abstr., 55, 16005 (1961).

30.E. F. Peters and B. L. Evering, US Patent 2,963,447; Chem. Abstr., 55, 5810 (1960).

31.R. L. Banks and G. C. Bailey, Ind. Eng. Chem., Prod. Res. Dev., 3, 170 (1964).

32.W. L. Truett, D. R. Johnson, I. M. Robinson and B. A. Montague, J. Am. Chem. Soc., 82, 2337 (1960).

33.G. Natta, G. Dall’Asta and G. Mazzanti, Angew. Chem., Int. Ed. Engl., 3, 723 (1964).

34.K. W. Scott, N. Calderon, E. A. Ofstead, W. A. Judy and J. P. Ward, Am. Chem. Soc., Adv. Chem. Ser., 91, 399 (1969).

35.R. R. Schrock, Polyhedron, 14, 3177 (1995).

36.P. B. van Dam, M. C. Mittelmeijer and C. Boelhouwer, J. Chem. Soc., Chem. Commun., 1221 (1972).

37.K. J. Ivin and B. D. Milligan, Makromol. Chem., Rapid Commun., 8, 269 (1987).

38.Y. Chauvin and D. Commereuc, J. Chem. Soc., Chem. Commun., 462 (1992).

39.M. Sibeijn, R. Spronk, J. A. R. van Veen and J. C. Mol, Catal. Lett., 8, 201 (1991).

40.A. N. Startsev, O. V. Klimov and E. A. Khomyakova, J. Catal., 139, 134 (1993).

41.R. A. Fridman, S. M. Nosakova, L. G. Liberov and A. N. Bashkirov, Izv. Akad. Nauk SSSR, Ser. Khim., 6, 678 (1977).

42.A. Andreini, X. Xu and J. C. Mol, Appl. Catal., 27, 31 (1986).

43.J. A. Moulijn and J. C. Mol, J. Mol. Catal., 46, 1 (1988).

44.R. Spronk, A. Andreini and J. C. Mol, J. Mol. Catal., 65, 219 (1991).

45.K. G. Moloy, J. Mol. Catal., 91, 291 (1994).

46.K. A. Vikulov, I. V. Elev, B. N. Shelimov and V. B. Kazansky, Catal. Lett., 2, 121 (1989).

47.K. A. Vikulov, I. V. Elev, B. N. Shelimov and V. B. Kazansky, J. Mol. Catal., 55, 126 (1989).

48.B. N. Shelimov, I. V. Elev and V. B. Kazansky, J. Mol. Catal., 46, 187 (1988).

49.V. B. Kazansky, B. N. Shelimov and K. A. Vikulov, Catal. Sci. Techn., Proc. Tokyo Conf., 1st, 159 (1991).

50.J. C. Mol, Catal. Lett., 23, 113 (1994).

51.K. A. Vikulov, B. N. Shelimov and V. B. Kazansky, J. Mol. Catal., 65, 393 (1991).

52.V. B. Kazansky and B. N. Shelimov, Res. Chem. Intermed., 15, 1 (1991).

24. Advances in the metathesis of olefins

1601

53.L. Bencze, A. Kraut-Vass and L. Prokai,´ J. Chem. Soc., Chem. Commun., 911 (1985).

54.B. L. Goodall, W. J. Kroenke, R. J. Minchak and L. F. Rhodes, J. Appl. Polym. Sci., 47, 607 (1993).

55.A. Bell, J. Mol. Catal., 76, 165 (1992).

56.F. Verpoort, A. R. Bossuyt and L. Verdonck, J. Chem. Soc., Chem. Commun., 417 (1995).

57.F. Verpoort, A. R. Bossuyt, L. Verdonck and B. Coussens, J. Mol. Catal., in press, (1997).

58.A. Bell, Am. Chem. Soc., Polym. Prepr., 35 (1), 694 (1994).

59.B. L. Goodall, L. H. Mclntosh and L. F. Rhodes, Macromol. Symp., 89, 421 (1995).

60.P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 118, 100 (1996).

61.M. B. France, R. A. Paciello and R. H. Grubbs, Macromolecules, 26, 4739 (1993).

62.A. W. Stumpf, E. Saive, A. Demonceau and A. F. Noels, J. Chem. Soc., Chem. Commun., 1127 (1995).

63.A. Keller, Inorg. Chim. Acta, 133, 207 (1987).

64.A. Keller, Trans. Met. Chem., 12, 320 (1987).

65.A. Keller, J. Mol. Catal., 53, L9 (1989).

66.A. Keller and L. Szterenberg, J. Mol. Catal., 57, 207 (1989).

67.A. Keller, J. Mol. Catal., 59, 75 (1990).

68.A. Keller, J. Organomet. Chem., 385, 285 (1990).

69.A. Keller, J. Organomet. Chem., 393, 389 (1990).

70.A. Keller, J. Mol. Catal., 64, 171 (1991).

71.A. Keller, J. Organomet. Chem., 407, 237 (1991).

72.A. Keller and L. Szterenberg, Z. Naturforsch., 476, 1469 (1992).

73.A. Keller, J. Organomet. Chem., 436, 199 (1992).

74.J. Heveling, J. Mol. Catal., 58, 1 (1990).

75.W. Fischer, P. Buchacher, F. Stelzer and K. D. Aichholzer, ISOM 11 Abstract P49 (1995).

76.H.-G. Ahn, K. Yamamoto, R. Nakamura and H. Niiyama, Chem. Lett., 503 (1992).

77.H. Yoshida, T. Tanaka, S. Matsuo, T. Funabiki and S. Yoshida, J. Chem. Soc., Chem. Commun., 761 (1995).

78.W. A. Nugent, J. Feldman and J. C. Calabrese, J. Am. Chem. Soc., 117, 8992 (1995).

79.W. R. Kroll and G. Doyle, J. Chem. Soc., Chem. Commun., 839 (1971).

80.Y. Chauvin, D. Commereuc and D. Cruypelinck, Makromol. Chem., 117, 2637 (1976).

81.T. J. Katz and N. Acton, Tetrahedron Lett., 4251 (1976).

82. S. P. Kolesnikov, T. L. Mitenina, S. A. Radzinskii, A. P. Sheinker, A. D. Abkin and

O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 30, 2303 (1981).

83.F. Quignard, M. Leconte and J. M. Basset, J. Chem. Soc., Chem. Commun., 1816 (1985).

84.A. Aguero and J. A. Osborn, New J. Chem., 12, 111 (1988).

85.G. Schoettel, J. Kress and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1062 (1989).

86.J. Feldman, R. T. DePue, C. J. Schaverien, W. M. Davis and R. R. Schrock, NATO ASI Ser. C269, 323 (1989).

87.R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins, M. DiMare and M. O’Regan, J. Am. Chem. Soc., 112, 3875 (1990).

88.L. K. Johnson, S. C. Virgil, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 112, 5384 (1990).

89.B. M. Novak, W. Risse and R. H. Grubbs, Adv. Polym Sci., 102, 47 (1992).

90. J. H. Oskam, H. H. Fox, K. B. Yap, D. H. McConville, R. O’Dell, B. J. Lichtenstein and

R. R. Schrock, J. Organomet. Chem., 459, 185 (1993).

91.P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 34, 2039 (1995).

92.S. M. Rocklage, J. D. Fellmann, G. A. Rupprecht, L. W. Messerle and R. R. Schrock, J. Am. Chem. Soc., 103, 1440 (1981).

93.K. C. Wallace and R. R. Schrock, Macromolecules, 20, 448 (1987).

94.K. C. Wallace, A. H. Liu, J. C. Dewan and R. R. Schrock, J. Am. Chem. Soc., 110, 4964 (1988).

95.R. R. Schrock, Acc. Chem. Res., 23, 158 (1990).

96.H. H. Fox, J.-K. Lee, L. Y. Park and R. R. Schrock, Organometallics, 12, 759 (1993).

97.H. H. Fox, R. R. Schrock and R. O’Dell, Organometallics, 13, 635 (1994).

98.J. H. Wengrovius, R. R. Schrock, M. R. Churchill, J. R. Missert and W. J. Youngs, J. Am. Chem. Soc., 102, 4515 (1980).

99.J. Kress, M. Wesolek and J. A. Osborn, J. Chem. Soc., Chem. Commun., 514 (1982).

100.J. Kress, J. A. Osborn, K. J. Ivin and J. J. Rooney, NATO ASI Ser., C215, 363 (1987).

1602

K. J. Ivin

101.J.-L. Couturier, C. Paillet, M. Leconte, J.-M. Basset and K. Weiss, Angew. Chem., Int. Ed. Engl., 31, 628 (1992).

102.L. K. Johnson, M. Frey, T. A. Ulibarri, S. C. Virgil, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 115, 8167 (1993).

103.P. A. van der Schaaf, D. M. Grove, W. J. J. Smeets, A. L. Spek and G. van Koten,

Organometallics, 12, 3955 (1993).

104. P. A. van der Schaaf, R. A. T. M. Abbenhuis, W. P. A. van der Noort, R. de Graaf,

D. M. Grove, W. J. J. Smeets, A. L. Spek and G. van Koten, Organometallics, 13, 1433 (1994).

105.R. Toreki, G. A. Vaughan, R. R. Schrock and W. M. Davis, J. Am. Chem. Soc., 115, 127 (1993).

106.A. M. LaPointe and R. R. Schrock, Organometallics, 14, 1875 (1995).

107.B. T. Flatt, R. H. Grubbs, R. L. Blanski, J. C. Calabrese and J. Feldman, Organometallics, 13, 2728 (1994).

108.S. T. Nguyen, L. K. Johnson, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 114, 3974 (1992).

109.Z. Wu, A. D. Benedicto and R. H. Grubbs, Macromolecules, 26, 4975 (1993).

110.S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 115, 9858 (1993).

111.R. H. Grubbs, M. Hillmyer, A. Benedicto and Z. Wu, Am. Chem. Soc., Polym. Prepr., 35(1), 688 (1994).

112.J. Kress, J. A. Osborn, R. M. E. Greene, K. J. Ivin and J. J. Rooney, J. Am. Chem. Soc., 109, 899 (1987).

113.J. Kress, J. A. Osborn, V. Amir-Ebrahimi, K. J. Ivin and J. J. Rooney, J. Chem. Soc., Chem. Commun., 1164 (1988).

114.J. Kress, J. A. Osborn and K. J. Ivin, J. Chem. Soc., Chem. Commun., 1234 (1989).

115.G. C. Bazan, J. H. Oskam, H.-N. Cho, L. Y. Park and R. R. Schrock, J. Am. Chem. Soc., 113, 6899 (1991).

116.M. J. McGeary, T. L. Tonker and J. L. Templeton, Organometallics, 4, 2102 (1985).

117.C. A. Toledano, H. Rudler, J.-C. Daran and Y. Jeannin, J. Chem. Soc., Chem. Commun., 574 (1984).

118.A. J. Schultz, R. K. Brown, J. M. Williams and R. R. Schrock, J. Am. Chem. Soc., 103, 169 (1981).

119.K. Angermund, F. W. Grevels, C. Kruger and V. Skibbe, Angew. Chem., Int. Ed. Engl., 23, 904 (1984).

120.J. Kress and J. A. Osborn, Angew. Chem. Int., Ed. Engl., 31, 1585 (1992).

121.J. H. Oskam and R. R. Schrock, J. Am. Chem. Soc., 114, 7588 (1992).

122.J. H. Oskam and R. R. Schrock, J. Am. Chem. Soc., 115, 11831 (1993).

123.J. Kress and J. A. Osborn, J. Am. Chem. Soc., 109, 3953 (1987).

124.J. B. Lee, G. J. Gajda, W. P. Schaefer and T. R. Howard, J. Am. Chem. Soc., 103, 7358 (1981).

125.K. J. Ivin, J. Kress and J. A. Osborn, J. Mol. Catal., 46, 351 (1988).

126.G. C. Bazan and R. R. Schrock, Macromolecules, 24, 817 (1991).

127.K. J. Ivin, J. Kress and J. A. Osborn, Makromol. Chem., 193, 1695 (1992).

128. W. J. Feast, V. C. Gibson, K. J. Ivin, E. Khosravi, A. M. Kenwright, E. L. Marshall and

J. P. Mitchell, Makromol. Chem., 193, 2103 (1992).

129.A. D. Benedicto, J. P. Claverie and R. H. Grubbs, Macromolecules, 28, 500 (1995).

130.A. R. Gregory and E. A. Mintz, J. Am. Chem. Soc., 107, 2179 (1985).

131.H. H. Fox, M. H. Schofield and R. R. Schrock, Organometallics, 13, 2804 (1994).

132.S. Nakamura and A. Dedieu, Nouveau J. Chim., 6, 23 (1982).

133.M. Sodupe, J. M. Lluch, A. Oliva and J. Bertran,´ New J. Chem., 15, 321 (1991).

134.A. K. Rappe´ and W. A. Goddard, J. Am. Chem. Soc., 104, 297 (1982).

135.A. Dedieu and O. Eisenstein, Nouveau J. Chim., 6, 337 (1982).

136.A. K. Rappe´ and W. A. Goddard, J. Am. Chem. Soc., 104, 448 (1982).

137.T. R. Cundari and M. S. Gordon, Organometallics, 11, 55 (1992).

138.E. Folga and T. Ziegler, Organometallics, 12, 325 (1993).

139.L. Bencze and R. Szilagyi, J. Organomet. Chem., 505, 81 (1995).

140.L. Bencze and R. Szilagyi, J. Mol. Catal., 76, 145 (1992).

141.L. Bencze and R. Szilagyi, J. Mol. Catal., 90, 157 (1994).

142.L. Bencze and R. Szilagyi, J. Organomet. Chem., 465, 211 (1994).

143.L. Bencze and R. Szilagyi, J. Organomet. Chem., 475, 183 (1994).

144.E. V. Anslyn and R. H. Grubbs, J. Am. Chem. Soc., 109, 4880 (1987).

24. Advances in the metathesis of olefins

1603

145.A. K. Rappe,´ and T. H. Upton, Organometallics, 3, 1440 (1984).

146.T. H. Upton and A. K. Rappe,´ J. Am. Chem. Soc., 107, 1206 (1985).

147.T. E. Taylor and M. B. Hall, J. Am. Chem. Soc., 106, 1576 (1984).

148.B. Tinland, F. Quignard, M. Leconte and J. M. Basset, J. Am. Chem. Soc., 105, 2924 (1983).

149.M. Sasaki, K. Tanaka, K. Tanaka and I. Toyoshima, J. Chem. Soc., Chem. Commun., 764 (1986).

150.K. Tanaka, K. Tanaka, H. Takeo and C. Matsumura, J. Am. Chem. Soc., 109, 2422 (1987).

151.I. V. Elev, B. N. Shelimov and V. B. Kazansky, Kinet. Katal., 28, 415 (1987).

152.E. S. Davie, D. A. Whan and C. Kemball, Proc. 5th Int. Congr. Catal., 1205 (1972).

153.S. Warwel, H. Ridder and S. Hachen, Chem. Ztg., 107, 115 (1983).

154.E. S. Finkel’shtein, V. I. Bykov and E. B. Portnykh, J. Mol. Catal., 76, 33 (1992).

155.E. A. Ofstead, J. P. Lawrence, M. L. Senyek and N. Calderon, J. Mol. Catal., 8, 227 (1980).

156.T. Kawai, H. Goto, Y. Yamazaki and T. Ishikawa, J. Mol. Catal., 46, 157 (1988).

157.H. Knoche, Chem. Abstr., 74, 44118 (1971).

158.K. Tanaka, NATO ASI Ser., C326, 271 (1990).

159.J. McGinnis, T. J. Katz and S. Hurwitz, J. Am. Chem. Soc., 98, 605 (1976).

160.A. M. Popov, R. A. Fridman, E. S. Finkel’shtein, N. S. Nametkin, V. M. Vdovin, A. N. Bashkirov, Y. B. Kryukov and L. G. Liberov, Izv. Akad. Nauk SSSR, Ser. Khim., 22, 1429 (1973).

161.B. S. Strel’chik, R. A. Fridman, E. S. Finkel’shtein and V. M. Vdovin, Izv. Akad. Nauk SSSR, Ser. Khim., 25, 579 (1976).

162.J. Konzelman and K. B. Wagener, Macromolecules, 28, 4686 (1995).

163.F. N. Tebbe, G. W. Parshall and G. Reddy, J. Am. Chem. Soc., 100, 3611 (1978).

164.F. N. Tebbe, G. W. Parshall and D. W. Ovenall, J. Am. Chem. Soc., 101, 5074 (1979).

165.Y. N. Usov, E. V. Pletneva and E. V. Skvortsova, Kinet. Katal., 24, 1017 (1983).

166.T. Kawai, N. Maruoka and T. Ishikawa, J. Mol. Catal., 60, 209 (1990).

167.E. S. Finkel’shtein, B. S. Strel’chik, E. B. Portnykh, V. M. Vdovin and N. S. Nametkin, Dokl. Akad. Nauk SSSR, 232, 1322 (1977).

168.P. Fitton and T. Whitesides, US Patent. 3,855,338 (1974).

169.S. Warwel and G. Putz,¨ Chem. Ztg., 112, 15 (1988).

170.T. Szymanska´-Buzar and J. J. Ziolkowski,´ J. Mol. Catal., 43, 161 (1987).

171.S. Warwel and W. Winkelmuller,¨ J. Mol. Catal., 28, 247 (1985).

172.W. E. Crowe and Z. J. Zhang, J. Am. Chem. Soc., 115, 10998 (1993).

173.R. Rossi, Chim. Ind. (Milan), 57, 242 (1975).

174.V. I. Bykov, T. A. Butenko, E. S. Finkel’shtein, P. V. Petrovskii, and V. M. Vdovin, Izv. Akad. Nauk SSSR, Ser. Khim., 37, 1580 (1988).

175.F. W. Kupper,¨ and R. Streck, Chem. Ztg., 99, 464 (1975).

176.F. W. Kupper¨ and R. Streck, Z. Naturforsch., B31, 1256 (1976).

177.J. C. Mol, NATO ASI Ser., C326, 115 (1990).

178.S. T. Nguyen, R. H. Grubbs and J. Feldman, to appear.

179.G. Descotes, J. Ramza, J.-M. Basset and S. Pagano, Tetrahedron Lett., 35, 7379 (1994).

180.J. C. Marmo and K. B. Wagener, Am. Chem. Soc., Polym. Prepr., 35(1), 817 (1994).

181.M. Leconte, I. Jourdan, S. Pagano, F. Lefebvre and J.-M. Basset, J. Chem. Soc., Chem. Commun., 857 (1995).

182.W. E. Crowe and D. R. Goldberg, J. Am. Chem. Soc., 117, 5162 (1995).

183.R. H. A. Bosma, G. C. N. van den Aardweg and J. C. Mol, J. Organomet. Chem., 280, 115 (1985).

184.N. B. Bespalova, M. A. Bovina and V. M. Vdovin, Izv. Akad. Nauk SSSR, Ser. Khim., 37, 920 (1988).

185.M. A. Hillmyer and R. H. Grubbs, Macromolecules, 28, 8662 (1995).

186.E. I. Bogolepova, I. V. Vygodskaya, G. A. Kliger and S. M. Loktev, Petrol. Chem., 31, 809 (1991).

187.R. H. A. Bosma, G. C. N. van den Aardweg and J. C. Mol, J. Chem. Soc., Chem. Commun., 1132 (1981).

188.C. T. Thu, T. Bastelberger and H. Hocker,¨ J. Mol. Catal., 28, 279 (1985).

189.J.-L. Couturier, K. Tanaka, M. Leconte, J.-M. Basset and J. Ollivier, Angew. Chem., Int. Ed. Engl., 32, 112 (1993).

190. R. A. Fridman, A. N. Bashkirov, L. G. Liberov, S. M. Nosakova, R. M. Smirnova and

S. B. Verbovetskaya, Dokl. Akad. Nauk SSSR, 234, 1354 (1977).

191.R. A. Fridman, L. G. Liberov, S. M. Nosakova, R. M. Smirnova and A. N. Bashkirov, Izv. Akad. Nauk SSSR, Ser. Khim., 28, 2816 (1979).

1604

K. J. Ivin

192.E. I. Bogolepova, I. V. Vygodskaya, G. A. Kliger and S. M. Loktev, Petrol. Chem., 32, 461 (1992).

193.J. C. Mol and E. F. G. Woerlee, J. Chem. Soc., Chem. Commun., 330 (1979).

194.J. Tsuji and S. Hashiguchi, J. Organomet. Chem., 218, 69 (1981).

195.S. Warwel and G. Putz,¨ J. Organomet. Chem., 364, 323 (1989).

196.H. Balcar and J. Dybal, React. Kinet. Catal. Lett., 30, 17 (1986).

197.H. Balcar, A. Dosedlova´ and B. Matyska, Collect. Czech. Chem. Commun., 51, 753 (1986).

198.J. C. Mol, J. Mol. Catal., 65, 145 (1991).

199.M. Y. Berezin, V. M. Ignatov, P. S. Belov, I. V. Elev, B. N. Shelimov and V. B. Kazansky,

Kinet. Katal., 32, 379 (1991).

200.J. C. Mol, J. Mol. Catal., 90, 185 (1994).

201.C. J. Schaverien, J. C. Dewan and R. R. Schrock, J. Am. Chem. Soc., 108, 2771 (1986).

202.F. J. Feher and T. L. Tajima, J. Am. Chem. Soc., 116, 2145 (1994).

203.Y. Seki, K. Takeshita and K. Kawamoto, J. Organomet. Chem., 369, 117 (1989).

204.B. Marciniec and C. Pietraszuk, J. Chem. Soc., Chem. Commun., 2003 (1995).

205.B. Marciniec and C. Pietraszuk, J. Organomet. Chem., 412, C1 (1991).

206.B. Marciniec and J. Gulinski, J. Organomet. Chem., 266, C19 (1984).

207.B. Marciniec, L. Rzejak, J. Gulinski, Z. Foltynowicz and W. Urbaniak, J. Mol. Catal., 46, 329 (1988).

208.B. Marciniec, H. Maciejewski, J. Gulinski and L. Rzejak, J. Organomet. Chem., 362, 273 (1989).

209.N. B. Bespalova and M. A. Bovina, Izv. Akad. Nauk SSSR, Ser. Khim., 39, 172 (1990).

210.V. M. Vdovin, N. V. Ushakov, E. B. Portnykh, E. S. Finkel’shtein and N. P. Abashkina, Izv. Akad. Nauk SSSR, Ser. Khim., 33, 2121 (1984).

211.E. S. Finkel’shtein, E. B. Portnykh, I. V. Antipova and V. M. Vdovin, Izv. Akad. Nauk SSSR, Ser. Khim., 38, 1358 (1989).

212.N. V. Ushakov, E. B. Portnykh and E. S. Finkel’shtein, Izv. Akad. Nauk SSSR, Ser. Khim., 40, 1207 (1991).

213.Z. Wu, S. T. Nguyen, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 117, 5503 (1995).

214.J. R. Stille and R. H. Grubbs, J. Am. Chem. Soc., 108, 855 (1986).

215.J. R. Stille, B. D. Santarsiero and R. H. Grubbs, J. Org. Chem., 55, 843 (1990).

216.I. Schopov and L. Mladenova, Makromol. Chem., 190, 1483 (1989).

217.I. Schopov and C. Jossifov, Makromol. Chem., Rapid Commun., 4, 659 (1983).

218.I. Schopov and L. Mladenova, Makromol. Chem., Rapid Commun., 6, 659 (1985).

219.C. Jossifov and I. Schopov, Makromol. Chem., 192, 857 (1991).

220.C. Jossifov and I. Schopov, Makromol. Chem., 192, 863 (1991).

221.C. Jossifov, Eur. Polym. J., 29, 9 (1993).

222.C. Jossifov and I. Schopov, Eur. Polym. J., 29, 621 (1993).

223.K. J. Ivin, Makromol. Chem., Macromol. Symp., 42/43, 1 (1991).

224.H.-G. Schmalz, Angew. Chem., Int. Ed. Engl., 34, 1833 (1995).

225.R. H. Grubbs, S. J. Miller and G. C. Fu, Acc. Chem. Res., 28, 446 (1995).

226.L. R. Sita, Macromolecules, 28, 656 (1995).

227.(a) G. W. Coates and R. H. Grubbs, J. Am. Chem. Soc., 118, 229 (1996).

(b)G. C. Fu, S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc., 115, 9856 (1993).

(c)M. E. Maier, D. Langenbacher, and F. Rebien, Liebigs Ann. Chem., 1843 (1995).

(d)E. I. Bogolepova, I. V. Vygodskaya, G. A. Kliger and S. M. Loktev., Neftekhimiya, 30, 507 (1990).

(e)E. I. Bogolepova, I. V. Vygodskaya, A. V. Bulanova, G. A. Kliger and S. M. Loktev.,

Neftekhimiya, 27, 106 (1987).

(f)G. C. Fu and R. H. Grubbs, J. Am. Chem. Soc., 114, 7324 (1992).

(g)C. M. Huwe and S. Blechert, Tetrahedron Lett., 36, 1621 (1995).

228.O. Fujimura, G. C. Fu and R. H. Grubbs, J. Org. Chem., 59, 4029 (1994).

229.J. P. Morken, M. T. Didiuk, M. S. Visser and A. H. Hoveyda, 116, 3123 (1994).

230.G. Descotes, J. Ramza, J.-M. Basset, S. Pagano, E. Gentil and J. Banoub, Tetrahedron, 52, 10903 (1996).

231.N. B. Bespalova, M. A. Bovina, M. B. Sergeeva and V. G. Zaikin, Russ. Chem. Bull., 43, 1425 (1994).

232.D. Villemin, Tetrahedron Lett., 21, 1715 (1980).

233.J. Tsuji and S. Hashiguchi, Tetrahedron Lett., 21, 2955 (1980).

24. Advances in the metathesis of olefins

1605

234. M. D. E. Forbes, J. T. Patton, T. L. Myers, H. D. Maynard, D. W. Smith, G. R. Schulz and

K. B. Wagener, J. Am. Chem. Soc., 114, 10978 (1992).

235.M. F. C. Plugge and J. C. Mol, SYNLETT, 507 (1991).

236.H. Junga and S. Blechert, Tetrahedron Lett., 34, 3731 (1993).

237.M. F. Schneider, H. Junga and S. Blechert, Tetrahedron, 51, 13003 (1995).

238.S. J. Miller, S.-H. Kim, Z.-R. Chen and R. H. Grubbs, J. Am. Chem. Soc., 117, 2108 (1995).

239.S. F. Martin and A. S. Wagman, Tetrahedron Lett., 36, 1169 (1995).

240.S. F. Martin, Y. Liao, H.-J. Chen, M. Patzel¨ and M. N. Ramser, Tetrahedron Lett., 35, 6005 (1994).

241.S. J. Miller and R. H. Grubbs, J. Am. Chem. Soc., 117, 5855 (1995).

242.T. D. Clark and M. R. Ghadiri, J. Am. Chem. Soc., 117, 12364 (1995).

243.B. C. Borer, S. Deerenberg, H. Bieraugel¨ and U. K. Pandit, Tetrahedron Lett., 35, 3191 (1994).

244.S. F. Martin, Y. Liao, Y. Wong and T. Rein, Tetrahedron Lett., 35, 691 (1994).

245.A. F. Houri, Z. Xu, D. A. Cogan and A. H. Hoveyda, J. Am. Chem. Soc., 117, 2943 (1995).

246.M. Leconte, S. Pagano, A. Mutch, F. Lefebvre and J. M. Basset, Bull. Soc. Chim. Fr., 132, 1069 (1995).

247.J. T. Anhaus, V. C. Gibson, W. Clegg and S. P. Collingwood, Organometallics, 12, 1780 (1993).

248.F. Lefebvre, M. Leconte, S. Pagano, A. Mutch and J.-M. Basset, Polyhedron, 14, 3209 (1995).

249.V. M. Vdovin, N. V. Ushakov, E. B. Portnykh, E. S. Finkel’shtein and N. P. Abashkina, Izv. Akad. Nauk SSSR, Ser, Khim., 33, 1892 (1984).

250.D. W. Smith and K. B. Wagener, Macromolecules, 26, 1633 (1993).

251.G. C. Fu and R. H. Grubbs, J. Am. Chem. Soc., 114, 5426 (1992).

252.G. Dall’Asta, G. Stigliani, A. Greco and L. Motta, Chim. Ind. (Milan), 55, 142 (1973).

253.K. B. Wagener, J. G. Nel, J. Konzelman and J. M. Boncella, Macromolecules, 23, 5155 (1990).

254.K. B. Wagener, J. M. Boncella and J. G. Nel, Macromolecules, 24, 2649 (1991).

255.P. O. Nubel, C. A. Lutman and H. B. Yokelson, Macromolecules, 27, 7000 (1994).

256.E. Thorn-Csanyi´ and K. P. Pflug, J. Mol. Catal., 90, 69 (1994).

257.J. E. O’Gara, K. B. Wagener and S. F. Hahn, Macromol. Chem., Rapid Commun., 14, 657 (1993).

258.K. B. Wagener and J. Konzelman, Am. Chem. Soc., Polym. Prepr., 32 (1), 375 (1991).

259.S. K. Cummings, D. W. Smith and K. B. Wagener, Macromol. Rapid Commun., 16, 347 (1995).

260.K. B. Wagener and D. W. Smith, Macromolecules, 24, 6073 (1991).

261.J. D. Portmess and K. B. Wagener, Am. Chem. Soc., Polym. Prepr., 36 (1), 614 (1995).

262.K. B. Wagener, K. Brzezinska and C. G. Bauch, Makromol. Chem., Rapid Commun., 13, 75 (1992).

263.K. B. Wagener and K. Brzezinska, Macromolecules, 24, 5273 (1991).

264.J. T. Patton, J. M. Boncella and K. B. Wagener, Macromolecules, 25, 3862 (1992).

265.C. G. Bauch, K. B. Wagener, and J. M. Boncella, Makromol. Chem., Rapid Commun., 12, 413 (1991).

266.K. B. Wagener and J. T. Patton, Macromolecules, 26, 249 (1993).

267.J. E. O’Gara, J. D. Portmess and K. B. Wagener, Macromolecules, 26, 2837 (1993).

268.A. S. Gamble, J. T. Patton and J. M. Boncella, Makromol. Chem., Rapid Commun., 13, 109 (1992).

269.A. Wolf, and K. B. Wagener, Am. Chem. Soc., Polym. Prepr., 32(1), 535 (1991).

270.E. Thorn-Csanyi,´ J. Hammer, K. P. Pflug, and J. U. Zilles, Macromol. Chem. Phys., 196, 1043 (1995).

271.J. Kress, J. Mol. Catal., A, Chem., 102, 7 (1995).

272.S. Warwel, H. Katker¨ and C. Rauenbusch, Angew. Chem., Int. Ed. Engl., 99, 702 (1987).

273.S. Warwel and H. Katker,¨ Synthesis, 935 (1987).

274.H. Jacobson and W. H. Stockmayer, J. Chem. Phys., 18, 1600 (1950).

275.U. W. Suter and H. Hocker,¨ Makromol. Chem., 189, 1603 (1988).

276.Z.-R. Chen, J. P. Claverie, R. H. Grubbs and J. A. Kornfield, Macromolecules, 28, 2147 (1995).

277.K. J. Ivin, S. Lillie and J. J. Rooney, Makromol. Chem., 179, 2787 (1978).

278.B. Bell, J. G. Hamilton, O. N. D. Mackey and J. J. Rooney, J. Mol. Catal., 77, 61 (1992).

279.M. B. France, R. H. Grubbs, D. V. McGrath and R. A. Paciello, Macromolecules, 26, 4742 (1993).

280.H. Cramail, M. Fontanille and A. Soum, J. Mol. Catal., 65, 193 (1991).

281.M. A. Hillmyer and R. H. Grubbs, Macromolecules, 26, 872 (1993).

282.T. C. Chung and M. Chasmawala, Macromolecules, 25, 5137 (1992).

1606

K. J. Ivin

283.W. E. Crowe, J. P. Mitchell, V. C. Gibson and R. R. Schrock, Macromolecules, 23, 3534 (1990).

284.K. J. Ivin, D. T. Laverty, J. H. O’Donnell, J. J. Rooney and C. D. Stewart, Makromol. Chem., 180, 1989 (1979).

285.R. M. E. Greene, J. G. Hamilton, K. J. Ivin and J. J. Rooney, Makromol. Chem., 187, 619 (1986).

286.L. Bencze and G. Szalai, J. Mol. Catal., in press (1997).

287.

E. Ceausescu,

A. Cornilescu,

E. Nicolescu,

M. Popescu,

S. Coca,

M. Cuzmici,

C. Oprescu,

 

M. Dimonie, G. Hubca, M. Teodorescu, R. Grosescu, A. Vasilescu and V. Dragutan, J. Mol.

 

Catal., 36, 163 (1986).

 

 

 

 

 

288.

E. Ceausescu,

A. Cornilescu,

E. Nicolescu,

M. Popescu,

S. Coca,

M. Cuzmici,

C. Oprescu,

 

M. Dimonie, M. Teodorescu, G. Hubca, V. Dragutan, M. Chipara, R. Grosescu and A. Vasilescu,

J. Mol. Catal., 46, 405 (1988).

289.E. M. D. Gillan, J. G. Hamilton, O. N. D. Mackey and J. J. Rooney, J. Mol. Catal., 46, 359 (1988).

290.H. E. Ardill, R. M. E. Greene, J. G. Hamilton, H. T. Ho, K. J. Ivin, G. Lapienis, G. M. McCann and J. J. Rooney, Am. Chem. Soc. Symp. Ser., 286, 275 (1985).

291.B. D. Babitskii, L. V. Gavrilova, T. T. Denisova and A. I. Syatkowskii, Dokl. Akad. Nauk SSSR, 257, 378 (1981).

292.T. T. Denisova, A. I. Syatkovskii and B. D. Babitskii, Polym. Sci. USSR, A25, 1408 (1983).

293.T. T. Denisova, A. I. Syatkovskii, T. B. Skuratova and B. D. Babitskii, Polym. Sci. USSR, A25, 798 (1983).

294.T. J. Katz, J. McGinnis and C. Altus, J. Am. Chem. Soc., 98, 606 (1976).

295.T. J. Katz, S. J. Lee and M. A. Shippey, J. Mol. Catal., 8, 219 (1980).

296.Z. Wu and R. H. Grubbs, J. Mol. Catal., 90, 39 (1994).

297.R. W. Alder, P. R. Allen and E. Khosravi, J. Chem. Soc., Chem. Commun., 1235 (1994).

298.Z. Wu and R. H. Grubbs, Macromolecules, 28, 3502 (1995).

299.C. T. Thu, T. Bastelberger and H. Hocker,¨ Makromol. Chem., Rapid Commun., 2, 383 (1981).

300.L. R. Sita and S. R. Lyon, J. Am. Chem. Soc., 115, 10374 (1993).

301.S. J. Lee, J. McGinnis and T. J. Katz, J. Am. Chem. Soc., 98, 7818 (1976).

302.J. G. Hamilton, K. J. Ivin and J. J. Rooney, Br. Polym. J., 16, 21 (1984).

303.J. G. Hamilton, K. J. Ivin, G. M. McCann and J. J. Rooney, Makromol. Chem., 186, 1477 (1985).

304.J. G. Hamilton, K. J. Ivin and J. J. Rooney, Br. Polym. J., 20, 91 (1988).

305.W. J. Feast, V. C. Gibson, K. J. Ivin, A.M. Kenwright and E. Khosravi, J. Mol. Catal., 90, 87 (1994).

306.M. Schimetta and F. Stelzer, Makromol. Chem. Phys., 195, 2699 (1994).

307.J. Kress, J. A. Osborn, R. M. E. Greene, K. J. Ivin and J. J. Rooney, J. Chem. Soc., Chem. Commun., 874 (1985).

308.J. G. Hamilton, K. J. Ivin, J. J. Rooney and L. C. Waring, J. Chem. Soc., Chem. Commun., 159 (1983).

309.K. J. Ivin, G. Lapienis and J. J. Rooney, J. Chem. Soc., Chem. Commun., 1068 (1979).

310.K. J. Ivin, G. Lapienis and J. J. Rooney, Polymer, 21, 436 (1980).

311.H. T. Ho, K. J. Ivin and J. J. Rooney, J. Mol. Catal., 15, 245 (1982).

312.H. T. Ho, K. J. Ivin and J. J. Rooney, Makromol. Chem., 183, 1629 (1982).

313.R. O’Dell, D. H. McConville, G. E. Hofmeister and R. R. Schrock, J. Am. Chem. Soc., 116, 3414 (1994).

314.T. Sunaga, K. J. Ivin, G. E. Hofmeister, J. H. Oskam and R. R. Schrock, Macromolecules, 27, 4043 (1994).

315.K. J. Ivin, L.-M. Lam and J. J. Rooney, Makromol. Chem., 195, 1189 (1994).

316.T. Steinhausler¨ and F. Stelzer, J. Mol. Catal., 90, 53 (1994).

317.T. Steinhausler,¨ F. Stelzer and E. Zenkl, Polymer, 35, 616 (1994).

318.B. M. Novak and R. H. Grubbs, J. Am. Chem. Soc., 110, 960 (1988).

319.A. D. Benedicto, B. M. Novak and R. H. Grubbs, Macromolecules, 25, 5893 (1992).

320.J. G. Hamilton, K. J. Ivin and J. J. Rooney, J. Mol. Catal., 28, 255 (1985).

321.L. R. Gilliom and R. H. Grubbs, J. Mol. Catal., 46, 255 (1988).

322.J. Kress, K. J. Ivin, V. Amir-Ebrahimi and P. Weber, Makromol. Chem., 191, 2237 (1990).

323.R. M. E. Greene, K. J. Ivin, G. M. McCann and J. J. Rooney, Makromol. Chem., 188, 1933 (1987).

324.N. Seehof and W. Risse, Macromolecules, 26, 5971 (1993).

325.G. Bazan, R. R. Schrock, E. Khosravi, W. J. Feast and V. C. Gibson, Polym. Commun., 30, 258 (1989).

Соседние файлы в папке Patai S., Rappoport Z. 1997 The chemistry of functional groups. The chemistry of double-bonded functional groups