Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
101
Добавлен:
01.06.2015
Размер:
603.65 Кб
Скачать

4. Уравнения Пуассона и Лапласа

Общая задача электростатики заключается в том, что если неизвестно распределение зарядов, но известны потенциалы проводников, их относительное расположение и форма, то можно определить потенциал в любой точке электростатического поля между проводниками. Зная потенциал , можно найти напряженность поля , что даст возможность указать распределение поверхностных зарядов проводников.

Для нахождения дифференциального уравнения, которому удовлетворяет функция   потенциал, воспользуемся дифференциальной формой теоремы гаусса.

Решив совместно эти уравнения, получим общее дифференциальное уравнение Пуассона  уравнение для потенциала в виде

, (2)

где 2  оператор Лапласа, который в декартовых координатах записывается в виде .

При отсутствии зарядов между проводниками уравнение Пуассона переходит в уравнение Лапласа, т. е.

2 = 0. (3)

Уравнения Пуассона и Лапласа позволяют решить общую задачу электростатики, решение которой является единственным (теорема единственности).

5. Зеркальное изображение электрических полей

Пусть положительный точечный заряд +q находится на расстоянии r от безграничной проводящей незаряженной плоскости.

Рис. 8

Этот заряд индуцирует на бесконечной проводящей плоскости заряд противоположного знака (рис. 8), где сплошными линиями показаны линии напряженности электростатического поля.

Сама проводящая плоскость является эквипотенциальной с  = 0.

Метод электрического (зеркального) изображения основан на том, что замена любой эквипотенциальной поверхности электрического поля бесконечной проводящей плоскости с тем же потенциалом не вызывает изменения этого поля.

Если на расстоянии, равном расстоянию заряда +q, от плоскости слева поместить «фиктивный» отрицательный точечный заряд q*= q [он является «зеркальным» отражением заряда +q относительно плоскости], то картина линий напряженности слева от плоскости зеркально совпадет с линиями напряженности действительного электрического поля справа.

В этом случае вектор напряженности результирующего поля зарядов +q и q во всех точках плоскости будет перпендикулярен ей (картина линий напряженности точно такая же, как и для электрического поля, созданного системой двух равных по величине, но противоположных по знаку точечных зарядов).

Следовательно, электрическое поле справа от плоскости определяется только зарядами +q и q.

Сила притяжения заряда +q к проводящей плоскости равна кулоновской силе, которая действует между зарядами +q и q по закону Кулона, (q  зеркальное изображение заряда +q), где расстояние между зарядами равно удвоенному расстоянию, т. е. 2r.

Замечание:

Теорема о равновесии зарядов.

Приведем без доказательства теорему о равновесии зарядов (теорема Ирншоу):

Любая равновесная конфигурация неподвижных точечных зарядов неустойчива, если на заряды не действуют другие силы, кроме кулоновских.