Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
WEST_J_2.DOC
Скачиваний:
29
Добавлен:
11.06.2015
Размер:
723.46 Кб
Скачать

Глава 2

Вентиляция

Как воздух поступает в альвеолы

В этой и следующих двух главах рассмотрено, каким об­разом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обес­печиваются соответственно вентиляцией, диффузией и кровотоком.

Рис. 2.1. Схема легкого. Приведены типичные значения объемов и рас­ходов воздуха и крови. На практике эти величины существенно варьи­руют (по J. В. West: Ventilation/Blood Flow and Gas Exchange. Oxford, Blackwell, 1977, p. 3, с изменениями)

На рис. 2.1 приведено схематическое изображение легкого. Бронхи, образующие воздухоносные пути (см. рис. 1.3), пред­ставлены здесь одной трубкой (анатомическим мертвым про­странством). По ней воздух поступает в газообменные отделы, ограниченные альвеолярно-капиллярной мембраной и кровью легочных капилляров. При каждом вдохе в легкие поступает около 500 мл воздуха (дыхательный объем). Из рис. 2.1 вид­но, что объем анатомического мертвого пространства мал по сравнению с общим объемом легких, а объем капиллярной крови гораздо меньше, чем объем альвеолярного воздуха (см. также рис. 1.7).

Легочные объемы

Перед тем как перейти к динамическим показателям вен­тиляции, полезно коротко рассмотреть “статические” легоч­ные объемы. Некоторые из них можно измерить с помощью спирометра (рис. 2.2). Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда коле­баний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает макси­мально глубокий вдох, а затем — как можно более глубокий выдох, то регистрируется объем, соответствующий жизнен­ной емкости легких (ЖЕЛ). Однако даже после максималь­ного выдоха в них остается некоторое количество воздуха — остаточный объем (ОО). Объем газа в легких после нормаль­ного выдоха называется функциональной остаточной емкостью (ФОЕ).

Функциональную остаточную емкость и остаточный объем нельзя измерить с помощью простого спирометра. Для этого применим метод разведения газа (рис. 2.3), заключающийся в следующем. Воздухоносные пути обследуемого соединяются со спирометром, содержащим в известной концентрации ге­лий—газ, практически нерастворимый в крови. Обследуемый делает несколько вдохов и выдохов, в результате чего кон­центрации гелия в спирометре, и в легких выравниваются. По­скольку потерь гелия не происходит, можно приравнять его количества до и после выравнивания концентраций, рав­ные соответственно C1 X V1 (концентрация X объем) и С2XX (V1+V2). Следовательно, V2= V1 (C1 —С2)/С2. На прак­тике в ходе выравнивания концентраций в спирометр добав­ляют кислород (чтобы компенсировать поглощение этого газа испытуемым) и абсорбируют выделяемый углекислый газ.

Функциональную остаточную емкость (ФОЕ) можно изме­рить также с помощью общего плетизмографа (рис. 2.4). Он представляет собой крупную герметичную камеру, напоми­нающую кабинку телефона-автомата, с обследуемым внутри.

Рис. 2.2. Легочные объемы. Обратите внимание па то, что функциональ­ную остаточную емкость и остаточный объем нельзя измерить методом спирометрии

Рис. 2.3. Измерение функциональной остаточной емкости (ФОЕ) методом разведения гелия

В конце нормального выдоха с помощью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При по­пытке вдоха газовая смесь в его легких расширяется, объем их увеличивается, а давление в камере растет с уменьшением объема воздуха в ней. По закону Бойля—Мариотта произ­ведение давления на объем при постоянной температуре — величина постоянная. Таким образом, P1V1== P2(V1 —deltaV), где P1 и P2—давление в камере соответственно до попытки вдохнуть и во время нее, V1 — объем камеры до этой попытки, a AV — изменение объема ка­меры (или легких). Отсюда можно рассчитать AV.

Далее необходимо применить закон Бойля—Мариотта к воздуху в легких. Здесь за­висимость будет выглядеть следующим образом: P3V2=P4 (V2+ AV), где Р3 и Р4 — давление в полости рта соот­ветственно до попытки вдох­нуть и во время нее, a V2 — ФОЕ, которая и рассчитыва­ется по этой формуле.

Рис. 2.4. Измерение ФОЕ с по­мощью общей плетизмографии. Когда обследуемый пытается сде­лать вдох при перекрытых воздухоносных путях, объем его легких несколько увеличивается, давление в дыхательных путях снижается, а давление в камере повышается. Отсюда, используя закон Бойля—Мариотта, можно рассчитать объем легких (подроб­нее см. в тексте)

Методом общей плетизмо­графии измеряется общий объ­ем воздуха в легких, в том чис­ле и участков, не сообщаю­щихся с полостью рта вслед­ствие того, что их воздухоносные пути перекрыты (см., на­пример, рис. 7.9). В отличие от этого метод разведения ге­лия дает лишь объем воздуха, сообщающегося с полостью рта, т. е. участвующий в вентиляции. У молодых здоровых людей эти два объема практи­чески одинаковы. У лиц же, страдающих легочными заболе­ваниями, участвующий в вентиляции объем может быть зна­чительно меньше общего, так как большое количество газов изолируется в легких из-за обструкции (закрытия) дыхатель­ных путей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]