Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лабораторная работа №1

.doc
Скачиваний:
32
Добавлен:
06.02.2016
Размер:
977.92 Кб
Скачать

Компания AMD изготовила четырехядерные процессоры единым кристаллом (в отличие от Intel, процессоры которой представляют собой фактически склейку двух двухядерных кристаллов). Процессор получил название AMD Phenom X4. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

На настоящий момент (1-2 квартал 2009 года) обе компании обновили свои линейки четырёхядерных процессоров. Intel представила семейство Core i7, состоящее из трех моделей, работающих на разных частотах. Основными преимуществами данного процессора является использование трехканального контроллера памяти ( типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7 является ее чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel-X58 и трехканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объем, а производство процессора было переведено на 45 нм техпроцесс, который позволил снизить тепловыделение и значительно повысить рабочие частоты. В целом AMD Phenom II X4 по производительности стоит на одном уровне с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстает от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, он будет пользоваться большим спросом, чем его предшественник.

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.

Первым многоядерным микропроцессором стал POWER4 от IBM, появившийся в 2001 году и имевший два ядра.

В октябре 2004 года Sun Microsystems выпустила двухъядерный процессор UltraSPARC IV, который состоял из двух модифицированных ядер UltraSPARC III. В начале 2005 был создан двухъядерный UltraSPARC IV+.

14 ноября 2005 года Sun выпустила восьмиядерный UltraSPARC T1, каждое ядро которого выполняло 4 потока.

5 января 2006 года Intel представила первый двухъядерный процессор на одном кристале Core Duo, для мобильной платформы.

В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.

В октябре 2007 года в продаже появились восьмиядерные UltraSPARC T2, каждое ядро выполняло 8 потоков.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona. 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10).

Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырёхъядерные процессоры которой представляют собой фактически склейку двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода, первый «четырёхъядерник» фирмы, названный AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

К 1—2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7, является её чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel X58 и трёхканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объём кэша (по сравнению с первым поколением Phenom), процессоры стали изготавливаться по 45-нм техпроцессу (это, соответственно, позволило снизить тепловыделение и значительно повысить рабочие частоты). В целом, AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстаёт от Intel Core i7. С выходом 6-ядерного процессора AMD Phenom II X6 Black Thuban 1090T ситуация немного изменилась в пользу AMD.

По состоянию на 2013 год массово доступны процессоры с двумя, тремя, четырьмя и шестью ядрами, а также двух-, трёх- и четырёх-модульные процессоры AMD поколения Bulldozer. В серверном сегменте также доступны 8-ядерные процессоры Xeon и Nehalem (Intel) и 12-ядерные Opteron (AMD).

Кэширование

Кэширование — это использование дополнительной быстродействующей памяти (так называемого кэша — англ. cache, от фр. cacher — «прятать») для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней (обозначаются L1, L2 и L3 — от Level 1, Level 2 и Level 3). Кэш 1-го уровня имеет наименьшую латентность (время доступа), но малый размер, кроме того, кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить одновременно 64-битные запись и чтение, либо два 64-битных чтения за такт, AMD K8L может производить два 128-битных чтения или записи в любой комбинации. Процессоры Intel Core 2 могут производить 128-битные запись и чтение за такт. Кэш 2-го уровня обычно имеет значительно большую латентность доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня — самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Гарвардская архитектура

Гарвардская архитектура отличается от архитектуры фон Неймана тем, что программный код и данные хранятся в разной памяти. В такой архитектуре невозможны многие методы программирования (например, программа не может во время выполнения менять свой код; невозможно динамически перераспределять память между программным кодом и данными); зато гарвардская архитектура позволяет более эффективно выполнять работу в случае ограниченных ресурсов, поэтому она часто применяется во встраиваемых системах.

Параллельная архитектура

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана.

Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными. Параллельные процессоры используются в суперкомпьютерах.

Возможными вариантами параллельной архитектуры могут служить (по классификации Флинна):

  • SISD — один поток команд, один поток данных;

  • SIMD — один поток команд, много потоков данных;

  • MISD — много потоков команд, один поток данных;

  • MIMD — много потоков команд, много потоков данных.

Цифровые сигнальные процессоры

Для цифровой обработки сигналов, особенно при ограниченном времени обработки, применяют специализированные высокопроизводительные сигнальные микропроцессоры (англ. digital signal processor, DSP) с параллельной архитектурой.

Процесс изготовления

Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается решение о том, какова будет архитектура будущего процессора, его внутреннее устройство, технология изготовления. Перед различными группами ставится задача разработки соответствующих функциональных блоков процессора, обеспечения их взаимодействия, электромагнитной совместимости. В связи с тем, что процессор фактически является цифровым автоматом, полностью отвечающим принципам булевой алгебры, с помощью специализированного программного обеспечения, работающего на другом компьютере, строится виртуальная модель будущего процессора. На ней проводится тестирование процессора, исполнение элементарных команд, значительных объёмов кода, отрабатывается взаимодействие различных блоков устройства, ведётся оптимизация, ищутся неизбежные при проекте такого уровня ошибки.

После этого из цифровых базовых матричных кристаллов и микросхем, содержащих элементарные функциональные блоки цифровой электроники, строится физическая модель процессора, на которой проверяются электрические и временные характеристики процессора, тестируется архитектура процессора, продолжается исправление найденных ошибок, уточняются вопросы электромагнитной совместимости (например, при практически рядовой тактовой частоте в 1 ГГц отрезки проводника длиной в 7 мм уже работают как излучающие или принимающие антенны).

Затем начинается этап совместной работы инженеров-схемотехников и инженеров-технологов, которые с помощью специализированного программного обеспечения преобразуют электрическую схему, содержащую архитектуру процессора, в топологию кристалла. Современные системы автоматического проектирования позволяют, в общем случае, из электрической схемы напрямую получить пакет трафаретов для создания масок. На этом этапе технологи пытаются реализовать технические решения, заложенные схемотехниками, с учётом имеющейся технологии. Этот этап является одним из самых долгих и сложных в разработке и иногда требует компромиссов со стороны схемотехников по отказу от некоторых архитектурных решений. Следует отметить, что ряд производителей заказных микросхем (foundry) предлагает разработчикам (дизайн-центру или fabless) компромиссное решение, при котором на этапе конструирования процессора используются представленные ими стандартизованные в соответствии с имеющейся технологией библиотеки элементов и блоков (Standard cell). Это вводит ряд ограничений на архитектурные решения, зато этап технологической подгонки фактически сводится к игре в конструктор «Лего». В общем случае, изготовленные по индивидуальным проектам микропроцессоры являются более быстрыми по сравнению с процессорами, созданными на основании имеющихся библиотек.

Технологический процесс в электронной промышленности

Следующим, после этапа проектирования, является создание прототипа кристалла микропроцессора. При изготовлении современных сверхбольших интегральных схем используется метод литографии. При этом, на подложку будущего микропроцессора (тонкий круг из монокристаллического кремния, либо сапфира) через специальные маски, содержащие прорези, поочерёдно наносятся слои проводников, изоляторов и полупроводников. Соответствующие вещества испаряются в вакууме и осаждаются сквозь отверстия маски на кристалле процессора. Иногда используется травление, когда агрессивная жидкость разъедает не защищённые маской участки кристалла. Одновременно на подложке формируется порядка сотни процессорных кристаллов. В результате появляется сложная многослойная структура, содержащая от сотен тысяч до миллиардов транзисторов. В зависимости от подключения транзистор работает в микросхеме как транзистор, резистор, диод или конденсатор. Создание этих элементов на микросхеме отдельно, в общем случае, не выгодно. После окончания процедуры литографии подложка распиливается на элементарные кристаллы. К сформированным на них контактным площадкам (из золота) припаиваются тонкие золотые проводники, являющиеся переходниками к контактным площадкам корпуса микросхемы. Далее, в общем случае, крепится теплоотвод кристалла и крышка микросхемы.

Затем начинается этап тестирования прототипа процессора, когда проверяется его соответствие заданным характеристикам, ищутся оставшиеся незамеченными ошибки. Только после этого микропроцессор запускается в производство. Но даже во время производства идёт постоянная оптимизация процессора, связанная с совершенствованием технологии, новыми конструкторскими решениями, обнаружением ошибок.

Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы периферийных схем ЭВМ, которые будут использоваться с микропроцессором и на основе которых создаются материнские платы. Разработка микропроцессорного набора (чипсета, англ. chipset) представляет задачу, не менее сложную, чем создание собственно микросхемы микропроцессора.

В последние несколько лет наметилась тенденция переноса части компонентов чипсета (контроллер памяти, контроллер шины PCI Express) в состав процессора (подробнее см.: Система на кристалле).

Энергопотребление процессоров

С технологией изготовления процессора тесно связано и его энергопотребление.

Первые процессоры архитектуры x86 потребляли мизерное (по современным меркам) количество энергии, составляющее доли ватта. Увеличение количества транзисторов и повышение тактовой частоты процессоров привело к существенному росту данного параметра. Наиболее производительные модели требуют до 130 и более ватт. Несущественный на первых порах фактор энергопотребления, сейчас оказывает серьёзное влияние на эволюцию процессоров:

  • совершенствование технологии производства для уменьшения потребления, поиск новых материалов для снижения токов утечки, понижение напряжения питания ядра процессора;

  • появление сокетов (разъемов для процессоров) с большим числом контактов (более 1000), большинство которых предназначено для питания процессора. Так у процессоров для популярного сокета LGA775 число контактов основного питания составляет 464 штуки (около 60 % от общего количества);

  • изменение компоновки процессоров. Кристалл процессора переместился с внутренней на внешнюю сторону, для лучшего отвода тепла к радиатору системы охлаждения;

  • интеграция в кристалл температурных датчиков и системы защиты от перегрева, снижающей частоту процессора или вообще останавливающей его при недопустимом увеличении температуры;

  • появление в новейших процессорах интеллектуальных систем, динамически меняющих напряжение питания, частоту отдельных блоков и ядер процессора, и отключающих неиспользуемые блоки и ядра;

  • появление энергосберегающих режимов для «засыпания» процессора, при низкой нагрузке.

Тепловыделение процессоров и отвод тепла

Для теплоотвода от микропроцессоров применяются пассивные радиаторы и активные кулеры.

Измерение и отображение температуры микропроцессора

Для измерения температуры микропроцессора, обычно внутри микропроцессора, в области центра крышки микропроцессора устанавливается датчик температуры микропроцессора. В микропроцессорах Intel датчик температуры — термодиод или транзистор с замкнутыми коллектором и базой в качестве термодиода, в микропроцессорах AMD — терморезистор.

Производители

Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM.

Большинство процессоров, используемых в настоящее время, являются Intel-совместимыми, то есть имеют набор инструкций и интерфейсы программирования, сходные с используемыми в процессорах компании Intel.

Среди процессоров от Intel: 8086, i286, i386, i486, Pentium, Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 — Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.). Процессоры IBM (POWER6, POWER7, Xenon, PowerPC) используются в суперкомпьютерах, в видеоприставках 7-го поколения, встраиваемой технике; ранее использовались в компьютерах фирмы Apple.

По данным компании IDC, по итогам 2009 года на рынке микропроцессоров для настольных ПК, ноутбуков и серверов доля корпорации Intel составила 79,7 %, доля AMD — 20,1 %.

Доли по годам:

Год

Intel

AMD

Другие

2007

78,9 %

13,1 %

8,0 %

2008

80,4 %

19,3 %

0,3 %

2009

79,7 %

20,1 %

0,2 %

2010

80,8 %

18,9 %

0,3 %

2011

83,7 %

10,2 %

6,1 %

СССР/Россия

Российские микропроцессоры

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности, стал задействованный в учебных целях МПК КР580 — набор микросхем, копия набора микросхем Intel 82xx. Использовался в отечественных компьютерах, таких как Радио 86РК, ЮТ-88, Микроша и т. д.

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ», НИИСИ РАН и ЗАО «ПКК Миландр». Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ разрабатывает процессоры серии «Комдив» на основе архитектуры MIPS. Техпроцесс — 0,5 мкм, 0,3 мкм; КНИ.

  • КОМДИВ32 (англ.), 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)

  • КОМДИВ64 (англ.), КОМДИВ64-СМП

  • Арифметический сопроцессор КОМДИВ128

ЗАО ПКК Миландр разрабатывает 16-разрядный процессор цифровой обработки сигналов и 2-ядерный процессор:

  • 2011 год, 1967ВЦ1Т — 16-разрядный процессор цифровой обработки сигналов, частота 50 МГц, КМОП 0,35 мкм

  • 2011 год, 1901ВЦ1Т — 2-ядерный процессор, DSP (100 МГц) и RISC (100 МГц), КМОП 0,18 мкм

НТЦ «Модуль» разработал и предлагает микропроцессоры семейства NeuroMatrix:

  • 1998 год, 1879ВМ1 (NM6403) — высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления — КМОП 0,5 мкм, частота 40 МГц.

  • 2007 год, 1879ВМ2 (NM6404) — модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления — 0,25 мкм КМОП.

  • 2009 год, 1879ВМ4 (NM6405) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 0,25 мкм КМОП, тактовая частота 150 МГц.

  • 2011 год, 1879ВМ5Я (NM6406) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 90нм КМОП, тактовая частота 300 МГц.

  • СБИС 1879ВМ3 — программируемый микроконтроллер с ЦАП и АЦП. Частота выборок до 600 МГц (АЦП) и до 300 МГц (ЦАП). Максимальная тактовая частота 150 МГц.

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор», отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

  • 2004 год, 1892ВМ3Т (MC-12) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SISD ядро ELcore-14. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).

  • 2004 год, 1892ВМ2Я (MC-24) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SIMD ядро ELcore-24. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).

  • 2006 год, 1892ВМ5Я (MC-0226) — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD ядро ELcore-26. Технология изготовления — КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).

  • 2008 год, NVCom-01 («Навиком») — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS навигации.

  • 2012 год, 1892ВМ7Я (ранее был известен как MC-0428) — однокристальная микропроцессорная гетерогенная система с четырьмя ядрами. Новый центральный процессор — MIPS RISCore32F64 с интегрированным 32/64 разрядным математическим акселератором и 2*16Кбайт (16К команды и 16К данные) кэш памятью первого уровня, 3 сигнальных сопроцессора — модернизированное MIMD ядро ELcore. Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность 9600 MFLOPs (32 бита). Корпус BGA-756.

  • 2012 год, NVCom-02T («Навиком-02Т») — однокристальная микропроцессорная система с тремя гетерогенными ядрами. Ведущий процессор — RISCore32F64, сигнальные сопроцессоры — MIMD DSP-кластер DELCore-30М. Сигнальные сопроцессоры организованны в двухпроцессорный кластер, поддерживающий вычисления с плавающей и фиксированной точкой, и интегрированный с 48-и канальным коррелятором для ГЛОНАСС/GPS-навигации. Сигнальные ядра имеют ряд новых возможностей, в том числе аппаратные команды для обработки графики (IEEE-754), аппаратную реализацию кодирования/декодирования по Хаффману; расширены возможности использования внешних прерываний; организован доступ ядер DSP к внешнему адресному пространству, возможно отключение частоты только от CPU. Технология изготовления — КМОП 130 нм, частота 250 МГц. Пиковая производительность — 4,0 GFLOPs (32 бита). Имеет пониженную потребляемую мощность.

В качестве перспективной модели представляется микропроцессор под обозначением «Мультиком-02» (MCom-02), позиционируемый как мультимедийный сетевой многоядерный процессор.

ОАО «Multiclet» разрабатывает и производит на сторонних мощностях микропроцессоры по запатентованой ею мультиклеточной технологии.

  • 2012 год, MCp0411100101  — универсальный микропроцессор, ориентированный на задачи управления и цифровой обработки сигналов. Поддерживает аппаратные операции с плавающей запятой. Технология изготовления — КМОП 180 нм, частота 100 МГц. Пиковая производительность 2,4 GFLOPs (32 бита). Приёмка - ОТК 1,3 и 5.

ОАО «Ангстрем» производит (не разрабатывает) следующие серии микропроцессоров:

  • 1839 — 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления — КМОП, тактовая частота 10 МГц.

  • 1836ВМ3 — 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота 16 МГц.

  • 1806ВМ2 — 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC.Технология изготовления — КМОП, тактовая частота 5 МГц.

  • Л1876ВМ1 32-разрядный RISC микропроцессор. Технология изготовления — КМОП, тактовая частота 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоров с проектными нормами 90, 130 и 350 нм и частотами от 150 до 1000 МГц (подробнее см. статью о серии — МЦСТ-R и о вычислительных комплексах на их основе «Эльбрус-90микро»). Также разработан VLIW-процессор «Эльбрус» с оригинальной архитектурой ELBRUS, используется в комплексах «Эльбрус-3М1»). Прошёл государственные испытания и рекомендован к производству новый процессор «Эльбрус-2С+», отличающийся от процессора «Эльбрус» тем, что содержит два ядра на архитектуре VLIW и четыре ядра DSP (Elcore-09). Основные потребители российских микропроцессоров — предприятия ВПК.

Китай

  • Семейство Loongson (Godson)

  • Семейство ShenWei (SW)

Япония

  • NEC VR (MIPS, 64 bit)

  • Hitachi VR (RISC)

Многоядерный процессор

Многоя́дерный проце́ссор — центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Архитектура многоядерных систем

Многоядерные процессоры можно подразделить по наличию поддержки когерентности (общей) кеш-памяти между ядрами. Бывают процессоры с такой поддержкой и без неё.