Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лабораторная работа №1

.doc
Скачиваний:
32
Добавлен:
06.02.2016
Размер:
977.92 Кб
Скачать

Способ связи между ядрами:

  • разделяемая шина

  • сеть (Mesh) на каналах точка-точка

  • сеть с коммутатором

  • общая кэш-память

Кэш-память: Во всех существующих на сегодня многоядерных процессорах кеш-памятью 1-го уровня обладает каждое ядро в отдельности, а кеш-память 2-го уровня существует в нескольких вариантах:

  • разделяемая — расположена на одном кристалле с ядрами и доступна каждому из них в полном объёме. Используется в процессорах семейств Intel Core.

  • индивидуальная — отдельные кеши равного объёма, интегрированные в каждое из ядер. Обмен данными из кешей 2-го уровня между ядрами осуществляется через контроллер памяти — интегрированный (Athlon 64 X2, Turion X2, Phenom) или внешний (использовался в Pentium D, в дальнейшем Intel отказалась от такого подхода).

Производительность

В приложениях, оптимизированных под многопоточность, наблюдается прирост производительности на многоядерном процессоре. Однако, если приложение не оптимизировано, то оно не будет получать практически никакой выгоды от дополнительных ядер, а может даже выполняться медленнее, чем на процессоре с меньшим количеством ядер, но большей тактовой частотой. Это в основном приложения, разработанные до появления многоядерных процессоров, либо приложения, в принципе не использующие многопоточность.

Большинство операционных систем позволяют выполнять несколько приложений одновременно. При этом получается выигрыш в производительности даже если приложения однопоточные.

Наращивание количества ядер

На сегодня многими производителями процессоров, в частности Intel, AMD, IBM, ARM дальнейшее увеличение числа ядер процессоров признано как одно из приоритетных направлений увеличения производительности.

В 2011 году освоено производство 8-ядерных процессоров для домашних компьютеров, и 16-ядерных для серверных систем.

Имеются экспериментальные разработки процессоров с большим количеством ядер (более 20). Некоторые из таких процессоров уже нашли применение в специфических устройствах.

История массовых многоядерных процессоров

Двухъядерные процессоры различных архитектур существовали ранее, например IBM PowerPC-970MP (G5), но их использование было ограничено узким кругом специализированных применений.

В апреле 2005 года AMD выпустила 2-ядерный процессор Opteron архитектуры AMD64, предназначенный для серверов. В мае 2005 года Intel выпустила процессор Pentium D архитектуры x86-64, ставший первым 2-ядерным процессором, предназначенным для персональных компьютеров.

В марте 2010 года появились первые 12-ядерные серийные процессоры, которыми стали серверные процессоры Opteron 6100 компании AMD (архитектура x86/x86-64).

В августе 2011 года компанией AMD были выпущены первые 16-ядерные серийные серверные процессоры Opteron серии 6200 (кодовое наименование Interlagos). Процессор Interlagos объединяет в одном корпусе два 8-ядерных (4-модульных) чипа и является полностью совместимым с существующей платформой AMD Opteron серии 6100 (Socket G34).

Сводные данные по истории микропроцессоров и их параметров представлены в обновляющейся английской статье: Хронология микропроцессоров, 2010ые годы. Для получения числа ядер процессора надо умножить поля "Cores per die" и "Dies per module", для получения числа аппаратных потоков - умножить число ядер на число "threads per core". Например, для Xeon E7, Intel: "4, 6, 8, 10" ядер на 1 die на 1-2 аппаратных потоков = максимум 10 ядер и 20 аппаратных потоков, AMD FX "Bulldozer" Interlagos "4-8" на 2 на 1 = максимум 16 ядер и 16 потоков.

История экспериментальных многоядерных процессоров

27 сентября 2006 года Intel представила прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс.

20 августа 2007 года компания Tilera, анонсировала чип TILE64 (англ.) с 64 процессорными ядрами и встроенной высокопроизводительной сетью, посредством которой обмен данными между различными ядрами может происходить со скоростью до 32 Тбит/с.

26 октября 2009 года Tilera анонсировала 100-ядерный процессор широкого назначения серии TILE-Gx (англ.). Каждое процессорное ядро представляет собой отдельный процессор с кеш-памятью 1 и 2 уровней. Ядра, память и системная шина связаны посредством топологии mesh network. Процессоры производятся по 40-нм техпроцессу и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года.

2 декабря 2009 года Intel представила одночиповый «облачный» Single-chip Cloud Computer (SCC) компьютер, представляющий собой 48-ядерный чип. «Облачность» процессора состоит в том, что все 48 ядер сообщаются между собой как сетевые узлы. SCC — часть проекта, целью которого является создание 100-ядерного процессора. Ожидается, что некоторые функции SCC появятся в серийных процессорах Intel в 2010 году.

В июне 2011 года Intel раскрыла детали разрабатываемой архитектуры Many Integrated Core (MIC) — эта технология выросла из проекта Larrabee. Микропроцессоры на основе этой архитектуры получат более 50 микроядер архитектуры x86 и начнут производится в 2012 году по 22-нм техпроцессу. Эти микропроцессоры не могут быть использованы в качестве центрального процессора, но из нескольких чипов этой архитектуры будут строиться вычислительные ускорители в виде отдельной карты расширения и конкурировать на рынках GPGPU и высокопроизводительных вычислений с решениями типа Nvidia Tesla и AMD FireStream. По опубликованному в 2012 году описанию архитектуры, возможны чипы с количеством ядер до 60.

В октябре 2011 года компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс (SP), при этом потребляя менее 1 Вт электроэнергии. Микропроцессоры спроектированы с использованием RISC-архитектуры и, ознакомительные образцы планировалось произвести в 2012 году по 28-нм техпроцессу GlobalFoundries. Данные процессоры не могут быть использованы в качестве центрального процессора, но компания Adapteva предлагает использовать их в качестве сопроцессора для таких сложных задач, как распознавание лиц или жестов пользователя. Компания Adapteva утверждает, что в дальнейшем число ядер данного микропроцессора может быть доведено до 4096.

В январе 2012 года компания ZiiLabs (дочернее предприятие Creative Technology) анонсировала 100-ядерную систему на чипе ZMS-40. Эта система, объединяющая 4-ядерный процессор ARM Cortex-A9 1,5 ГГц (с мультимедийными блоками Neon) и массив из 96 более простых и менее универсальных вычислительных ядер StemCell. Ядра StemCell — это энергоэффективная архитектура SIMD, пиковая производительность при вычислениях с плавающей запятой (32 бит) — 50 гигафлопс, ядра которой работают скорее как GPU в других системах на чипе, и могут быть использованы для обработки видео, изображений и аудио, для ускорения 3D- и 2D-графики и других мультимедийных задач (поддерживается OpenGL ES 2.0 и OpenCL 1.1).

Многоядерные контроллеры

Существует также тенденция внедрения многоядерных микроконтроллеров в мобильные устройства.

Например:

  • seaForth-24 — новая разработка multi-core MISC-архитектуры Chuck Moore 1 ГГц 24-ядерный асинхронный контроллер.

  • Контроллер от Parallax имеет восемь 32-разрядных процессоров (COG) в одном кристалле P8X32A.

Kilocore PowerPC-процессор с 1024 8-битными ядрами, работающими на частоте 125 МГц. На данный момент существует 256-ядерный процессор.

Ска́нер (англ. scanner) — устройство, выполняющее преобразование расположенного на плоском носителе (чаще всего бумаге) изображения в цифровой формат. Процесс получения такой цифровой копии называется сканированием.

Во время сканирования при помощи АЦП создаётся цифровое описание изображения внешнего для ЭВМ образа объекта, которое затем передаётся посредством системы ввода/вывода в ЭВМ.

Виды сканеров

Бывают ручные, рулонные (англ. Sheet-Feed), планшетные и проекционные сканеры. Разновидностью проекционных сканеров являются слайд-сканеры, предназначенные для сканирования фотоплёнок. В высококачественной полиграфии используются барабанные сканеры, в которых в качестве светочувствительного элемента используется фотоэлектронный умножитель (ФЭУ).

Се́нсорный экран — устройство ввода информации, представляющее собой экран, реагирующий на прикосновения к нему.

Графи́ческий планше́т (от англ. graphics tablet или graphics pad, drawing tablet, digitizing tablet, digitizer — дигитайзер, диджитайзер) — это устройство для ввода рисунков от руки непосредственно в компьютер. Состоит из пера и плоского планшета, чувствительного к нажатию или близости пера. Также может прилагаться специальная мышь.

Первым графическим планшетом был «Телеавтограф», запатентованный Элишей Греем (Elisha Gray) в 1888. Элиша Грей более известен как современник изобретателя телефона - Александра Белла.

Первый графический планшет, похожий на современные, использовался для распознавания рукописного ввода компьютером Stylator в 1957. Более известный и часто ошибочно именуемый первым, графический планшет RAND Tablet также известен как «Графакон» (ГРАФический КОНвертер), представленный в 1964. RAND Tablet использовал сетку проводников под поверхностью планшета, на которые подавались закодированные троичным кодом Грея электрические импульсы. Ёмкостно связанное перо принимало этот сигнал, который затем мог быть декодирован обратно в координаты.

Другой графический планшет известен как «акустический планшет», перо которого генерировало искры при помощи искрового промежутка. Щелчки триангулировались серией микрофонов для определения местонахождения пера. Система была довольно сложной и дорогой, микрофоны были чувствительны к посторонним шумам.

Графические планшеты популяризовались в связи с их коммерческим успехом в середине 1970-х — начале 1980-х гг. ID (Intelligent Digitizer) и BitPad выпускаемых Summagraphics Corp. Эти планшеты использовались как устройство ввода для множества Hi-End CAD (Computer Aided Design) систем, соединёнными с ПК и ПО вроде AutoCAD.

Первые планшеты для потребительского рынка назывались «КоалаПэд». Хотя изначально они были созданы для компьютера Apple II, со временем «Коала» распространилась и на другие персональные компьютеры. Потом другие фирмы стали выпускать свои модели планшетов.

Звуковая плата

  • Звуковая плата (звуковая карта, аудиокарта; англ. soundcard) – дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения, устанавливаемые в соответствующий слот. В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC’97 или Intel HD Audio).

  • История звуковых карт для IBM PC.

  • Поскольку IBM PC проектировался не как мультимедийная машина, а инструмент для решения научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук встроенного динамика, сообщавший о неисправностях. (На компьютерах фирмы Apple звук присутствовал изначально.)

  • В 1986 году в продажу поступило устройство фирмы CovoxInc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, Covox можно считать первой внешней звуковой платой. Covox был очень дёшев и прост по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе и для воспроизведения стереофонического звучания.

  • В 1988 году фирма CreativeLabs выпустила устройство CreativeMusicSystem (С/MS, позднее также продавалась под названием GameBlaster) на основе двух микросхем звукогенератора Philips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha.

  • Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequencymodulation).Данный принцип позволял получить более естественное звучание инструментов, чем у GameBlaster.

  • Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания.

  • Эта плата стала основой стандарта SoundBlaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

  • Одним из методов сокращения объёмов, занимаемых музыкой, является MIDI (MusicalInstrumentDigitalInterface) – способ записи команд, посылаемых инструментам. MIDI-файл (обычно это файл с расширением mid) содержит ссылки на ноты. Когда MIDI-совместимая звуковая карта получает эту ссылку, она ищет необходимый звук в таблице (WaveTable). Стандарт General MIDI описывает около 200 звуков.

  • Карты, поддерживающие этот стандарт, обычно имеют память, в которой хранятся звуки, либо используют для этого память компьютера. Одной из первых wavetables-карт была GravisUltrasound. Creative, стремясь упрочить своё положение на рынке, выпустила собственный звуковой процессор EMU8000 (EMU8K) и музыкальную плату на его основе SoundBlaster AWE32, которая была, несомненно, лучшей картой того времени. «32»­ – это количество голосов MIDI-синтезатора в карточке.

  • С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты SoundBlasterLive! на аудиопроцессоре EMU10K, который поддерживал технологию EAX, устанавливает новый стандарт для IBM PC, который остаётся (в усовершенствованном виде) актуален и по сей день.

  • Структура современных звуковых плат.

  • Все звуковые платы по назначению можно разделить на три группы:

чисто звуковые, содержащие только тракт цифровой записи/воспроизведения. Эти платы позволяют только записывать или воспроизводить непрерывный звуковой поток, наподобие магнитофона. Вся работа по запоминанию записываемого и подготовке воспроизводимого потока возлагается на программное обеспечение; оцифрованный звук при этом в самой плате не хранится. Некоторые звуковые платы имеют встроенные сигнальные процессоры для обработки звука в процессе его записи или воспроизведения.

чисто музыкальные, содержащие только музыкальный синтезатор. Такие платы ориентированы прежде всего на генерацию относительно коротких музыкальных звуков по командам от центрального процессора; сами звуки при этом либо создаются параметрически, либо воспроизводятся оцифровки, заранее помещенные в память синтезатора (ПЗУ или ОЗУ). Музыкальные платы не имеют возможности записи звука и, даже при наличии ОЗУ в синтезаторе, не рассчитаны на воспроизведение непрерывного звукового потока, хотя иногда этого можно добиться при помощи особых методов. Некоторые музыкальные платы содержат эффект-процессор для обработки создаваемого звука.

комбинированные, или звуко-музыкальные, с объединенным на одной плате цифровым трактом и музыкальным синтезатором. Обычно под словом "синтезатор" подразумевается WT; платы только с FM-синтезатором, который сильно ограничен для музыкального применения, чаще всего относят к категории чисто звуковых.

  • По конструкции все платы делятся на обычные, или основные, называемые по традиции "картами", которые вставляются в разъем системной магистрали (обычно ISA), и дочерние, подключаемые к специальному 26-контактному разъему на основной карте.

  • Из-за ограничений интерфейса между основной и дочерней платами дочерние платы могут быть только чисто музыкальными - никаких возможностей по записи/воспроизведению звукового потока они иметь не могут. 

В комбинированных картах можно выделить четыре более-менее независимых блока: 

1. Блок цифровой записи/воспроизведения, называемый также цифровым каналом, или трактом, карты. Осуществляет преобразования аналог->цифра и цифра->аналог в режиме программной передачи или по DMA. Состоит из узла, непосредственно выполняющего аналогово-цифровые преобразования - АЦП/ЦАП (международное обозначение - coder/decoder, codec), и узла управления. АЦП/ЦАП либо интегрируется в состав одной из микросхем карты, либо применяется отдельная микросхема (AD1848, CS4231, CT1703 и т.п.). От качества применяемого АЦП/ЦАП во многом зависит качество оцифровки и воспроизведения звука; не меньше зависит она и от входных и выходных усилителей. 

Цифровой канал большинства распространенных карт (кроме GUS) совместим с SoundBlasterPro (8 разрядов, 44 кГц - моно, 22 кГц - стерео).  Разрядность оцифровки, передаваемой по каналу DMA, не зависит от разрядности самого канала и определяется только возможностями карты. 

2. Блок синтезатора. Построен либо на базе микросхем FM-синтеза OPL2 (YM3812) или OPL3 (YM262), либо на базе микросхем WT-синтеза (GF1, WaveFront, EMU8000, Dream и т.п.), либо того и другого вместе. Работает либо под управлением драйвера (FM, большинство WT) - программная реализация MIDI, либо под управлением собственного процессора - аппаратная реализация. Почти все FM-синтезаторы совместимы между собой, различные WT-синтезаторы - нет. Большинство WT-синтезаторов содержит встроенное ПЗУ со стандартным набором инструментов General MIDI (128 мелодических и 37 ударных инструментов), некоторые также содержат ОЗУ для загрузкидополнительных оцифрованных звуков, которые будут использоваться при исполнении музыки. Загружаемые звуки обычно оформляются в наборы (банки), содержащие тематические или универсальные наборы звуков (инструментов). Для композиции или аранжировки в основном применяются различные тематические банки, многие из которых зачастую используются одновременно, для простого проигрывания MIDI-файлов - универсальные (GM, GS, MT-32 и т.п.). 

3. Блок MPU. Осуществляет прием/передачу данных по внешнему MIDI-интерфейсу, выведенному на разъем MIDI/Joystick и разъем для дочерних MIDI-плат. Обычно более или менее совместим с интерфейсом MPU-401, но чаще всего требуется программная поддержка.  4. Блок микшера. Осуществляет регулирование уровней, коммутацию и сведение используемых на карте аналоговых сигналов. В состав микшера входят предварительные, промежуточные и выходные усилители звуковых сигналов. 

В дочерних платах основными блоками являются собственно музыкальный синтезатор и блок MIDI-интерфейса, через который плата получает MIDI-сообщения с основной карты. Синтезатор обязательно имеет ПЗУ различного объема; наличие ОЗУ возможно, но неудобно, поскольку MIDI является достаточно медленным для загрузки оцифровок интерфейсом. Синтезированный звук возвращается в основную карту по аналоговому стереоканалу.

BIOS (англ. basic input/output system — «базовая система ввода-вывода»), также БСВВ, — реализованная в виде микропрограмм часть системного программного обеспечения, которая предназначается для предоставления операционной системе API доступа к аппаратуре компьютера и подключенным к нему устройствам.

В персональных IBM PC-совместимых компьютерах, использующих микроархитектуру x86, BIOS представляет собой набор записанных в микросхему EEPROM (ПЗУ) персонального компьютера микропрограмм (образующих системное программное обеспечение), обеспечивающих начальную загрузку компьютера и последующий запуск операционной системы.

Для новых платформ компания Intel на замену традиционному BIOS предлагает Extensible Firmware Interface.

Основные производители BIOS для ноутбуков, персональных компьютеров и серверов (кроме продавцов-производителей):

  • American Megatrends (AMI)

  • Award Software 

  • Phoenix Technologies

Для компьютеров на базе иных платформ для обозначения встроенного ПО используются другие термины. Например, в архитектуре SPARC такой набор микропрограмм может называться PROM, или Boot.

Назначение BIOS материнской платы

Инициализация и проверка работоспособности аппаратуры

Бо́льшую часть BIOS материнской платы составляют микропрограммы инициализации контроллеров на материнской плате, а также подключённых к ней устройств, которые, в свою очередь, могут иметь управляющие контроллеры с собственными BIOS.

Сразу после включения питания компьютера, во время начальной загрузки компьютера, при помощи программ, записанных в BIOS, происходит самопроверка аппаратного обеспечения компьютера — POST (power-on self-test). В ходе POST BIOS проверяет работоспособность контроллеров на материнской плате, задаёт низкоуровневые параметры их работы (например, частоту шины и параметры центрального микропроцессора, контроллера оперативной памяти, контроллеров шин FSB, AGP, PCI, USB). Если во время POST случился сбой, BIOS может выдать информацию, позволяющую выявить причину сбоя. Если нет возможности вывести сообщение на монитор, BIOS издаёт звуковой сигнал через встроенный динамик.

Устро́йства вы́вода — периферийные устройства, преобразующие результаты обработки цифровых машинных кодов в форму, удобную для восприятия человеком или пригодную для воздействия на исполнительные органы объекта управления. Устройства для вывода визуальной информации

  • Монитор (дисплей)

  • Проектор

  • Принтер

  • Графопостроитель

Устройства для вывода звуковой информации

  • Встроенный динамик

  • Колонки

  • Наушники

Устройства для вывода прочей информации

  • Игровой джойстик (при столкновении с препятствием вибрирует)

  • Видеокарта

Устройства ввода/вывода

  • Магнитный барабан

  • Стример

  • Дисковод

  • Жёсткий диск

  • Различные порты

  • Различные сетевые интерфейсы

В соответствии с точным определением, в качестве «сердца» компьютера рассматриваются центральный процессор и ОЗУ. Все операции, не являющиеся внутренними по отношению к этому комплексу, рассматриваются как операции ввода/вывода.

Кэш-память или кеш (англ. cache, от фр. cacher — «прятать»; произносится [kæʃ] — «кэш») — промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше осуществляется быстрее, чем выборка исходных данных из более медленной памяти или удаленного источника, однако её объем существенно ограничен по сравнению с хранилищем исходных данных.

IDE (англ. Integrated Drive Electronics) — параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. Разработан в 1986 году фирмой Western Digital, позднее стал именоваться ATA, затем PATA.

Веб-камера (также вебкамера) — малоразмерная цифровая видео или фотокамера, способная в реальном времени фиксировать изображения, предназначенные для дальнейшей передачи по сети Интернет (в программах типа Skype, Instant Messenger или в любом другом видеоприложении).

Веб-камеры, доставляющие изображения через интернет, закачивают изображения на веб-сервер либо по запросу, либо непрерывно, либо через регулярные промежутки времени. Это достигается путём подключения камеры к компьютеру или благодаря возможностям самой камеры. Некоторые современные модели обладают аппаратным и программным обеспечением, которое позволяет камере самостоятельно работать в качестве веб-сервера, FTP-сервера, FTP-клиента и (или) отсылать изображения электронной почтой.

Веб-камеры, предназначенные для видеоконференций, — это, как правило, простые модели камер, подключаемые к компьютеру, на котором запущена программа типа Instant Messenger.

Модели камер, используемые в охранных целях, могут снабжаться дополнительными устройствами и функциями (такими, как детекторы движения, подключение внешних датчиков и т. п.)

Блок питания. Импульсные блоки питания являются инверторной системой. В импульсных блоках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы — это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящего от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

TFT

TFT в дисплеях

Тонкоплёночные транзисторы применяются в нескольких типах дисплеев.

Например, во многих ЖК-дисплеях используются TFT как элементы управления активной матрицей на жидких кристаллах. Однако сами тонкоплёночные транзисторы, как правило, не являются достаточно прозрачными.

В последнее время TFT стали применяться во многих OLED-дисплеях как элементы управления активной матрицей на органических светодиодах (AMOLED).

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. Liquid crystal display, LCD) — плоский дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Простые приборы с дисплеем (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2—5-цветный дисплей. Многоцветное изображение формируется с помощью RGB-триад.

Дисплей на жидких кристаллах используется для отображения графической или текстовой информации в компьютерных мониторах (также и в ноутбуках), телевизорах, телефонах, цифровых фотоаппаратах, электронных книгах, навигаторах, планшетах, электронных переводчиках, калькуляторах, часах и т. п., а также во многих других электронных устройствах.

На 2008 год в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом (6 бит на каждый RGB-канал), 24-битность эмулируется мерцанием с дизерингом.

LCD TFT (англ. Thin film transistor — тонкоплёночный транзистор) — разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами.

Системная шина — это «паутина», соединяющая между собой все устройства и отвечающая за передачу информации между ними. Расположена она на материнской плате и внешне не видна. Системная шина — это набор проводников (металлизированных дорожек на материнской плате), по которым передается информация в виде электрических сигналов.

Чем выше тактовая частота системной шины, тем быстрее будет осуществляться передача информации между устройствами и, как следствие, увеличится общая производительность компьютера, т. е. повысится скорость компьютера.

В персональных компьютерах используются системные шины стандартов ISA, EISA, VESA, VLB и PCI. ISA, EISA, VESA и VLB, которые в настоящее время являются устаревшими и не выпускаются на современных материнских платах. Сегодня самой распространенной является шина PCI.

Существуют и специализированные шины, например внутренние шины процессоров или шина для подключения видеоадаптеров — AGP.

Все стандарты различаются как по числу и использованию сигналов, так и по протоколам их обслуживания.

Шина входит в состав материнской платы, на которой располагаются ее проводники и разъемы (слоты) для подключения плат адаптеров устройств (видеокарты, звуковые карты, внутренние модемы, накопители информации, устройства ввода/вывода и т. д.) и расширений базовой конфигурации (дополнительные пустующие разъемы).

Существуют 16- и 32-разрядные, высокопроизводительные (VESA, VLB, AGP и PCI с тактовой частотой более 16 МГц) и низкопроизводительные (ISA и EISA с тактовой частотой 8 и 16 МГц) системные шины. Также шины, разработанные по современным стандартам (VESA, VLB и PCI), допускают подключение нескольких одинаковых устройств, например нескольких жестких дисков, а шина PCI обеспечивает самоконфигурируемость периферийного (дополнительного) оборудования — поддержку стандарта Plug and Play, исключающего ручную конфигурацию аппаратных параметров периферийного оборудования при его изменении или наращивании. Операционная система, поддерживающая этот стандарт, сама настраивает оборудование, подключенное по шине PCI, без вмешательства пользователя.

Имеются как 64-разрядные расширения шины PCI, так и 32-разрядные, работающие на частоте 66 МГц.

Компьютерная ши́на (от англ. computer bus) — в архитектуре компьютера подсистема, которая передаёт данные между функциональными блоками компьютера. В связи с этим разделяется механический, электрический (физический) и логический (управляющий) уровни.

В отличие от связи точка-точка, обычно к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов (соединений) для физического подключения устройств, карт и кабелей.

Компьютерные шины ранних вычислительных машин представляли собой жгуты (пучки соединительных проводов — сигнальных и питания, для компактности и удобства обслуживания увязанных вместе) реализующие параллельные электрические шины с несколькими подключениями. В современных вычислительных системах данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины.

Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (англ. multidrop) и цепные (англ. daisy chain) топологии. В случае USB и некоторых других шин могут также использоваться хабы (концентраторы).

Некоторые виды скоростных шин (Fibre Channel, InfiniBand, скоростной Ethernet, SDH) для передачи сигналов используют не электрические соединения, а оптические.

Присоединители к шине, разнообразные разъёмы, как правило унифицированы и позволяют подключить различные устройства к шине.

Управление передачей по шине реализуется как на уровне прохождения сигнала (мультиплексоры, демультиплексоры, буферы, регистры, шинные формирователи), как и со стороны ядра операционной системы — в таком случае в его состав входит соответствующий драйвер.

Северный мост (англ. Northbridge; в отдельных чипсетах Intel, также — контроллер-концентратор памяти англ. Memory Controller Hub, MCH[) — системный контроллер[2][3] чипсета на материнской плате платформы x86, к которому в рамках организации взаимодействия подключены:

  • через Front Side Bus — микропроцессор,

  • если в составе процессора нет контроллера памяти, то через шину контроллера памяти — оперативная память,

  • через шину графического контроллера — видеоадаптер (в материнских платах нижнего ценового диапазона видеоадаптер часто встроенный). В таком случае северный мост, произведенный Intel, называется GMCH (от англ. Chipset Graphics and Memory Controller Hub).

Название можно объяснить представлением архитектуры чипсета в виде карты. В результате контроллер-концентратор памяти будет располагаться на вершине карты, на севере.

Исходя из назначения, северный мост определяет параметры (возможный тип, частоту, пропускную способность):

  • системной шины и, косвенно, процессора (исходя из этого — до какой степени может быть разогнан компьютер),

  • оперативной памяти (тип — например SDRAM, DDR, её максимальный объем),

  • подключенного видеоадаптера.

Во многих случаях именно параметры и быстродействие северного моста определяют выбор реализованных на материнской плате шин расширения (PCI, PCI Express) системы.

В свою очередь, северный мост соединён с остальной частью материнской платы через согласующий интерфейс и южный мост.

На этапе, когда технологии производства не позволяют скомпенсировать возросшее, вследствие усложнения внутренней схемы, тепловыделение чипа, современные мощные микросхемы северного моста, помимо пассивного охлаждения (радиатора), для своей бесперебойной работы требуют использования индивидуального вентилятора или системы жидкостного охлаждения.

В современных системах, начиная от Intel Nehalem и AMD Sledgehammer отсутствует северный мост в виде отдельного контроллера (чипа). Его функция была перенесена в центральный процессор, тем самым упростив проектирование системных плат и уменьшив количество активных компонентов последнего.

USB (ю-эс-би, англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, треугольник и квадрат, расположенные на концах древовидной блок-схемы.

Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА, у USB 3.0 — 900 мА).

Принтер (от англ. print — печать; син. печатающее устройство) — периферийное устройство компьютера, предназначенное для перевода текста или графики на физический носитель из электронного вида малыми тиражами (от единиц до сотен) без создания печатной формы. Этим принтеры отличаются от полиграфического оборудования и ризографов, которое за счёт печатной формы быстрее и дешевле на крупных тиражах (сотни и более экземпляров).

Получили распространение многофункциональные устройства (МФУ), в которых в одном приборе объединены функции принтера, сканера, копировального аппарата и телефакса. Такое объединение рационально технически и удобно в работе.

Широкоформатные принтеры иногда ошибочно называют плоттерами .

Классификация

По возможности печати графической информации принтеры делятся на алфавитно-цифровые (с возможностью печати ограниченного набора символов) и графические.

По принципу переноса изображения на носитель принтеры делятся на:

  • ударно-шрифтовые (алфвавитно-цифровые, АЦПУ) - барабанные, на основе лепесткового печатающего устройства или пишущей машинки с электромагнитным приводом. Исторические типы. Морально устарели в 1980-е годы. С начала 1990-х годов не выпускаются.

  • матричные;

  • лазерные (также светодиодные принтеры);

  • струйные;

  • сублимационные

  • твердочернильные

По количеству цветов печати

  • на монохромные(одноцветные) (монохромные)

  • цветные.

Устройства ввода — периферийное оборудование для занесения (ввода) данных или сигналов в компьютер либо другое электронное устройство во время его работы. Устройства ввода и вывода составляют аппаратный интерфейс между компьютером и сканером или 6DOF-контроллером.

Устройства ввода подразделяются на следующие категории:

  • аудио, видео и механические устройства;

  • непрерывные устройства ввода (к примеру, мышь, позиция которой изменяется достаточно быстро и постоянно, что может рассматриваться как непрерывный ввод);

  • устройства для пространственного использования, такие как двухмерная мышь или трехмерный навигатор (особенно для CAD-приложений).

Также многие компьютерные указывающие устройства ввода классифицируются по способу управления курсором:

  • прямой ввод, когда управление осуществляется непосредственно в месте видимости курсора. Например, сенсорные панели и экраны;

  • непрямые указывающие устройства, к примеру, трекболы или мыши.

Разновидности устройств ввода

Компьютерная клавиатура

Основным, и обычно необходимым, устройством ввода текстовых символов и последовательностей (команд) в компьютер остаётся клавиатура.

Устройства ввода графической информации

  • Сканер

  • Видео- и Веб-камера

  • Цифровой фотоаппарат

  • Плата видеозахвата

Устройства ввода звуковой информации

  • Микрофон

  • Цифровой диктофон

Устройства ввода текстовой информации

  • Клавиатура

Указательные (координатные) устройства

  • Мышь

  • Трекбол

  • Тачпад

  • Световое перо

  • Графический планшет

  • Тачскрин

  • Джойстик

  • Устройства основанные на компьютерном зрении типа Kinect

Игровые устройства ввода

  • Джойстик

  • Педаль

  • Геймпад

  • Руль

  • Танцевальная платформа

Оптический диск

Оптический диск (англ. optical disc) — собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помощью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками «питами» (от англ. pit — «ямка», «углубление») на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация.

Первое поколение оптических дисков

  • Лазерный диск

  • Компакт-диск

  • Магнитооптический диск

Второе поколение оптических дисков

  • DVD

  • MiniDisc

  • Digital Multilayer Disk

  • DataPlay

  • Fluorescent Multilayer Disc

  • GD-ROM

  • Universal Media Disc

Третье поколение оптических дисков

  • Blu-ray Disc

  • HD DVD

  • Forward Versatile Disc

  • Ultra Density Optical

  • Professional Disc for DATA

  • Versatile Multilayer Disc

Четвёртое поколение оптических дисков

  • Holographic Versatile Disc

  • SuperRens Disc

  • Optical Disc Archive Advisory Group

Сетевая плата, также известная как сетевая карта, сетевой адаптер, Ethernet-адаптер, NIC (англ. network interface controller) — периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети. В настоящее время, особенно в персональных компьютерах, сетевые платы довольно часто интегрированы в материнские платы для удобства и удешевления всего компьютера в целом.

Типы

По конструктивной реализации сетевые платы делятся на:

  • внутренние — отдельные платы, вставляющиеся в ISA, PCI или PCI-E слот;

  • внешние, подключающиеся через LPT, USB или PCMCIA интерфейс, преимущественно использующиеся в ноутбуках;

  • встроенные в материнскую плату.

На 10-мегабитных сетевых платах для подключения к локальной сети используются 4 типа разъёмов:

  • 8P8C для витой пары;

  • BNC-коннектор для тонкого коаксиального кабеля;

  • 15-контактный разъём AUI трансивера для толстого коаксиального кабеля.

  • оптический разъём (en:10BASE-FL и другие стандарты 10 Мбит Ethernet)

Эти разъёмы могут присутствовать в разных комбинациях, иногда даже все три сразу, но в любой данный момент работает только один из них.

На 100-мегабитных платах устанавливают либо разъём для витой пары (8P8C, ошибочно называемый RJ-45), либо оптический разъем (SC, ST, MIC).

Рядом с разъёмом для витой пары устанавливают один или несколько информационных светодиодов, сообщающих о наличии подключения и передаче информации.

Одной из первых массовых сетевых карт стала серия NE1000/NE2000 фирмы Novell с разъемом BNC.

Параметры сетевого адаптера

При конфигурировании карты сетевого адаптера могут быть доступны следующие параметры:

  • номер линии запроса на аппаратное прерывание IRQ

  • номер канала прямого доступа к памяти DMA (если поддерживается)

  • базовый адрес ввода/вывода

  • базовый адрес памяти ОЗУ (если используется)

  • поддержка стандартов автосогласования дуплекса/полудуплекса, скорости

  • поддержка тегированных пакетов VLAN (802.1q) с возможностью фильтрации пакетов заданного VLAN ID

  • параметры WOL (Wake-on-LAN)

  • функция Auto-MDI/MDI-X автоматический выбор режима работы по прямой либо перекрестной обжимке витой пары

В зависимости от мощности и сложности сетевой карты она может реализовывать вычислительные функции (преимущественно подсчёт и генерацию контрольных сумм кадров) аппаратно либо программно (драйвером сетевой карты с использованием центрального процессора).

Серверные сетевые карты могут поставляться с двумя (и более) сетевыми разъёмами. Некоторые сетевые карты (встроенные в материнскую плату) также обеспечивают функции межсетевого экрана (например, nforce).